LÝ THUYẾT VÀ BÀI TẬP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ ...
Có thể bạn quan tâm
LÝ THUYẾT VÀ BÀI TẬP
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC
Phương pháp chung:
Đưa đa thức cần phân tích về dưới dạng của hằng đẳng thức, rồi phân tích thành nhân tử bằng các hằng đẳng thức.
Bài 1: Phân tích thành nhân tử:
a, x2 – 9
b, 4x2 – 25
c, x6 – y6
Lời giải:
a, x2 – 9 = x2 – 32 = (x + 3)(x – 3)
b, 4x2 – 25 = (2x)2 – 52 = (2x + 5)(2x – 5)
c, x6 – y6 = (x3)2 – (y3)2 = (x2 + y3)(x3 – y3)
= (x + y)(x2 – xy + y)(x – y)(x2 + xy + y2)
Bài 2: Phân tích thành nhân tử:
a, 9x2 + 6xy + y2
b, 6x – 9 – x2
c, x2 + 4y2 + 4xy
Lời giải:
a, 9x2 + 6xy + y2 = (3x)2 + 2.(3x)y + y2 = (3x + y)2
b, 6x – 9 – x2 = - (x2 – 2.x.3 + 32) = - (x – 3)2
c, x2 + 4y2 + 4xy = x2 + 2.x.(2y) + (2y)2 = (x + 2y)2
Bài 3: Phân tích thành nhân tử:
a, (x + y)2 – (x – y)2
b, (3x + 1)2 – (x + 1)2
c, x3 + y3 + z3 – 3xyz
Lời giải:
a, (x + y)2 – (x – y)2 = [(x + y) + (x – y)][(x + y) – (x – y)]
= (x + y + x – y)(x + y – x + y) = 2x.2y = 4xy
b, (3x + 1)2 – (x + 1)2 = [(3x + 1) + (x +1)][(3x + 1) – (x + 1)]
= (3x + 1 + x + 1)(3x + 1 – x – 1)
= (4x + 2).2x = 4x(2x + 1)
c, x3 + y3 + z3 – 3xyz = (x + y)3 – 3xy(x + y) + z3 – 3xyz
= [(x + y)3 + z3] – 3xy(x + y + z)
= (x + y + z)[(x + y)2 – (x + y)z + z2] – 3xy(x + y + z)
= (x + y + z)(x2 + 2xy + y2 – xz – yz + z2 – 3xy)
= (x + y + z)(x2 + y2 + z2 – xy – xz - yz)
Bài 4: Tính nhanh:
a, 252 – 152
b, 872 + 732 – 272 - 132
Lời giải:
a, 252 – 152 = (25 + 15)(25 – 15) = 40.100 = 400
b, 872 + 732 – 272 - 132 = (872 – 132) + (732 – 272)
= (87 + 13)(87 – 13) + (73 + 27)(73 – 27)
= 100.74 + 100.46 = 100(74 + 46) = 100.120 = 12000
Bài 5: Tìm x biết
a, x3 – 0,25x = 0
b, x2 - 10x = -25
Lời giải:
a, x3 – 0,25x = 0
⇔x(x2 - 0,25) = 0
⇔ x(x2 - 0,52) = 0
⇔ x(x + 0,5)(x – 0,5) = 0
b, Ta có: x = 0
Hoặc x + 0,5 = 0 ⇒ x = -0,5
Hoặc x – 0,5 = 0 ⇒ x = 0,5
Vậy x = 0; x = - 0,5; x = 0,5
x2 - 10x = -25 ⇔ x2 – 2.x.5 + 52 = 0
⇔ (x – 5)2 = 0 ⇔ x – 5 = 0 ⇔ x = 5
Bài 6: Phân tích các đa thức sau thành nhân tử
a) x3+ 3x2+ 3x + 1;
b) (x + y)2- 9x2.
Lời giải
a) x3+ 3x2+ 3x + 1 = x3 + 3x2.1 + 3x.12 + 13 = (x + 1)3
b) (x + y)2– 9x2= (x + y)2 – (3x)2
= (x + y + 3x)(x + y - 3x)
= (4x + y)(-2x + y)
Bài 7: Tính nhanh: 1052 – 25.
Lời giải
1052 - 25 = 1052 - 52
= (105 + 5)(105 - 5)
= 110.100
= 11000
Bài 8: Phân tích các đa thức sau thành nhân tử:
\(\begin{array}{l}a){\rm{ }}{x^2} + {\rm{ }}6x{\rm{ }} + {\rm{ }}9\;\;\;\;\\b){\rm{ }}10x{\rm{ }}--{\rm{ }}25{\rm{ }}--{\rm{ }}{x^2}\\c)8{x^3} - \frac{1}{8}\\d)\frac{1}{{25}}{x^2} - 64{y^2}\end{array}\)
Lời giải:
a) x2+ 6x + 9
= x2 + 2.x.3 + 32
= (x + 3)2
b) 10x – 25 – x2
= -(-10x + 25 + x2)
= -(25 – 10x + x2)
= -(52 – 2.5.x + x2)
= -(5 – x)2
\(\begin{array}{l}c)8{x^3} - \frac{1}{8}\\ = (2x - \frac{1}{2})(4{x^2} + x + \frac{1}{4})\\d)\frac{1}{{25}}{x^2} - 64{y^2}\\ = {(\frac{1}{5} - x)^2} - {(8y)^2}\\ = (\frac{1}{5}x + 8y)(\frac{1}{5}x - 8y)\end{array}\)
Bài 9: Phân tích các đa thức sau thành nhân tử:
a) x3 + 1/27
b) (a + b)3– (a – b)3
c) (a + b)3+ (a – b)3
d) 8x3+ 12x2y + 6xy2+ y3
e) –x3+ 9x2– 27x + 27
Lời giải:
\(\begin{array}{l}a){x^3} + \frac{1}{{27}}\\ = {x^3} + {(\frac{1}{3})^3}\\ = (x + \frac{1}{3})({x^2} - \frac{x}{3} + \frac{1}{9})\end{array}\)
b) (a + b)3– (a – b)3
= [(a + b) – (a – b)][(a + b)2 + (a + b).(a – b) + (a – b)2]
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2+ a2 – 2ab + b2)
= 2b.(3a2+ b2)
c) (a + b)3+ (a – b)3
= [(a + b) + (a – b)][(a + b)2 – (a + b)(a –b) + (a – b)2]
= (a + b – a + b)(a2 + 2ab + b2 – a2 + b2 + a2 – 2ab + b2)
= 2a.(a2 + 3b2)
d) 8x3+ 12x2y + 6xy2+ y3
= (2x)3 + 3.(2x)2.y + 3.2x.y2 + y3
= (2x + y)3
e) –x3+ 9x2– 27x + 27
= 27 – 27x + 9x2 – x3
= 33 – 3.32.x + 3.3.x2 – x3
= (3 – x)3
Bài 10: Tìm x, biết:
a) 2 – 25x2 = 0
b) \({x^2} - x + \frac{1}{4}\) = 0
Lời giải:
\(\begin{array}{l}a)2 - 25{x^2} = 0\\ \Leftrightarrow {(\sqrt 2 )^2} - {(5x)^2} = 0\\ \Leftrightarrow (\sqrt 2 - 5x)(\sqrt 2 + 5x) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt 2 = 5x\\\sqrt 2 = - 5x\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 2 }}{5}\\x = - \frac{{\sqrt 2 }}{5}\end{array} \right.\end{array}\)
\(\begin{array}{l}b){x^2} - x + \frac{1}{4} = 0\\ \Leftrightarrow {x^2} - 2.x.\frac{1}{2} + {(\frac{1}{2})^2} = 0\\ \Leftrightarrow {(x - \frac{1}{2})^2} = 0\\ \Leftrightarrow x = \frac{1}{2}\end{array}\)
Bài 11. Tính nhanh:
a) 732 - 272; b) 372 - 132; c) 20022 - 22
Lời giải:
a) 732 - 272 = (73 + 27)(73 – 27) = 100.46 = 4600
b) 372 - 132 = (37 + 13)(37 – 13) = 50.24 = 100.12 = 1200
c) 20022 - 22 = (2002 + 2)(2002 – 2) = 2004 .2000 = 4008000
Từ khóa » Phân Tích đa Thức X^3-x^2+1/3x-1/27
-
Viết Dưới Dạng Hằng đẳng Thức:x3 - X2 + 1/3x - 1/27 - Hoc24
-
Viết Dưới Dạng Hằng đẳng Thức:x3 - X2 1/3x - 1/27 - Olm
-
X^3+x^2+1/3x+1/27
-
Phân Tích đa Thức X^3-x^2+1/3x+1/27
-
Phân Tích đa Thức X^3+1/27 Thành Nhân Tử - Hoàng Duy - HOC247
-
Phân Tích Các đa Thức Sau Thành Nhân Tử: A) X^3 + 1/27 B) B) (a + B) ^3
-
Giải Phương Trình: X^3 + 3x^2 + 3x + 1 = 27. B) X^3 - 9x^2 + 27x - 27
-
Giải X^3-x^2+1/3x-1/27 | Ứng Dụng Giải Toán Microsoft Math
-
Bai 1: Phân Tích đa Thức Thành Nhân Tử A) X2 - 4x - Y2 + 4 B) X2 - 2x
-
Phương Pháp Phân Tích đa Thức Thành Nhân Tử - Lớp 8