Lý Thuyết Về Căn Bậc 2 – Toán Lớp 9 HOCMAI
Có thể bạn quan tâm
A. Căn bậc 2 Toán lớp 9
I. Lý thuyết về căn bậc 2
1. Khái niệm
Căn bậc hai của một số a (điều kiện a không âm) là số x thì thỏa mãi điều kiện x² = a
2. Các tính chất của căn bậc 2
– Không có căn bậc 2 của số âm
– Số 0 chỉ có một căn bậc hai duy nhất đó chính là số 0, ta viết √0 = 0
– Một số dương a bất kỳ có 2 và chỉ 2 căn bậc hai là hai số đối nhau (trái dấu nhau); số dương ký hiệu là √a, số âm ký hiệu là -√a.
Vậy căn bậc 2 của a = √a và -√a
3. Ví dụ cụ thể
– Căn bậc 2 của 64 là 8 và -8.
– Căn bậc 2 cuả 10 là √10 và -√10
– Không có căn bậc 2 của -20 do -20 < 0
II. CĂN BẬC HAI SỐ HỌC
1. Định nghĩa về căn bậc hai số học
– Cho một số dương a bất kỳ thì số √a được gọi là căn bậc hai số học của a.
– TH đặc biệt: Số 0 cũng được gọi là căn bậc hai số học của 0.
– Ta viết x = √a <=> x >= 0 và x² = a
– Một số ví dụ minh họa:
- Căn bậc hai số học của 9 là √9 (= 3).
- Căn bậc hai số học của 7 là √7 (≈ 2,645751311…)
Ví dụ 1: Tìm căn bậc hai số học của các số sau đây: 100, 121, 625, 10000
Giải:
- Căn bậc hai số học của 100 là √100 (= 10).
- Căn bậc hai số học của 121 là √121 (= 11)
- Căn bậc hai số học của 625 là √625 (= 25)
- Căn bậc hai số học của 10000 là √10000 (=100)
2. Phép khai phương
– Phép khai phương là phép toán học tìm căn bậc hai số học của số không âm – lớn hơn 0 (Phép khai phương gọi tắt là khai phương).
– Khi biết một căn bậc hai số học của một số, chúng ta sẽ dễ dàng xác định được các căn bậc hai của số này.
– Ví dụ minh họa:
Căn bậc hai số học của 64 là 8 vậy 64 sẽ có hai căn bậc hai là 8 và -8.
Căn bậc hai số học cuả 10000 là 100 vậy 10000 sẽ có hai căn bậc hai là 100 và -100
Căn bậc hai số học của 121 là 11 vậy 121 sẽ có hai căn bậc hai là 11 và -11
3. Một số kết quả cần nhớ
– Với trường hợp: a ≥ 0 thì a = (√a)2.
– Với trường hợp: a ≥ 0, nếu x ≥ 0 và x2 = a thì x = √a.
– Với trường hợp: a ≥ 0 và x2 = a thì x = ±√a.
III. SO SÁNH CÁC CĂN BẬC HAI SỐ HỌC.
Định lý so sánh các căn bậc 2 số học
Cho hai số a và b đều không âm, ta có biểu thức như sau:
a > b ⇔ √a > √b
Một số ví dụ minh họa:
1. So sánh 1 với √2
Hướng dẫn giải:
Ta có 1 < 2 ⇒ √1 < √2.
Vậy 1 < √2.
2. So sánh 4 với √7.
Hướng dẫn giải:
Ta có 16 > 7 ⇒ √16 > √7
Vậy 4 > √7.
3. Hãy so sánh các số sau:
a) 4 và √17
b) 8 và √52
Hướng dẫn giải:
a) Ta có: 4 = √16 mà 17 > 16 nên √17 > √16. Vậy √17 > 4
b) Ta có: 8 = √64 mà 64 > 52 nên √64 > √52 tức 8 < √52
B. Một số dạng bài về căn bậc hai lớp 9
Dạng 1: Tìm căn bậc hai số học và so sánh hai căn bậc hai.
Phương pháp giải:
Áp dụng định lý so sánh các căn bậc 2 số học như sau:
Cho hai số a và b đều không âm, ta có biểu thức như sau:
a > b ⇔ √a > √b
Dạng 2: Tính giá trị của biểu thức chứa căn bậc hai
Phương pháp giải:
Sử dụng hằng đẳng thức
√A² = |A| = A (Khi A >= 0) và – A (Khi A < 0)
Dạng 3: Rút gọn biểu thức chứa căn
Phương pháp giải:
Đưa các biểu thức chứa căn về dạng hằng đẳng thức đáng nhớ. Một số hằng đẳng thức hay sử dụng trong dạng này gồm:
- (a + b)² = a² + 2ab + b²
- (a – b)² = a² – 2ab + b²
- √A² = A (khi A >= 0) và -A (khi A < 0)
Dạng 4: Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa
Phương pháp giải:
Sử dụng định lý √A có nghĩa ⇔ A >= 0
Dạng 5: Giải phương trình chưa căn bậc 2
Phương pháp giải:
Các em học sinh cần lưu ý một số phép biến đổi tương đương có liên quan đến căn bậc 2 như sau:
HM10 2024 - GIẢI PHÁP LUYỆN THI TOÀN DIỆN NẮM CHẮC KIẾN THỨC - KHÔNG LO BIẾN DỘNG ĐỀ THI
- Lộ trình toàn diện - NẮM CHẮC NỀN TẢNG - TỔNG ÔN TOÀN DIỆN - LUYỆN ĐỀ CHUYÊN SÂU
- ĐA DẠNG HÌNH THỨC HỌC - PHÙ HỢP VỚI MỌI NHU CẦU
- TOP THẦY CÔ DANH TIẾNG, GIÀU KINH NGHIỆM
- DỊCH VỤ HỖ TRỢ HỌC TẬP ĐÔNG HÀNH TRONG SUÔT QUÁ TRÌNH HỌC TẬP
- Chu trình học tập khép kín HỌC - LUYỆN - HỎI - KIỂM TRA
- Đa dạng hình thức học - Phù hợp với mọi nhu cầu
- Đội ngũ giáo viên giảng dạy nổi tiếng với 16+ năm kinh nghiệm
- Dịch vụ hỗ trợ học tập đồng hành xuyên suốt quá trình học tập
Tham khảo ngay: Tài liệu ôn tập Toán lớp 9
C Bài tập thực hành căn bậc 2 lớp 9
Bài 1: Tìm x để các căn thức bậc hai sau có nghĩa
Bài 2: Rút gọn các biểu thức sau:
Bài 3: Giải các phương trình sau:
Bài 4: Chứng minh rằng:
√2 + √6 + √12 + √20 + √30 + √42 < 24
Bài 5: Tìm giá trị lớn nhất của biểu thức:
Bài 6: Rút gọn biểu thức A
Bài 7: Cho biểu thức M có dạng:
a) Rút gọn biểu thức M;
b) Tìm các giá trị của x để M = 4.
Bài 8: Tìm giá trị nhỏ nhất của mỗi biểu thức:
Bài 9: Tìm x, để
Trên đây là toàn bộ kiến thức mà các em học sinh cần nắm được về Căn bậc 2 trong chương trình Toán lớp 9. Hy vọng bài viết trên sẽ giúp các em có thêm kiến thức để giải các dạng bài tập liên quan tới căn bậc 2 lớp 9.
RELATED ARTICLESMORE FROM AUTHOR
Xét tốt nghiệp THCS: Thông tư 31/2023 của Bộ GD&ĐT và những đổi mới phụ huynh học sinh nhất định phải biết!
Tuyển sinh vào 10: Đề thi minh họa môn Ngữ văn thi vào 10 của Hải Phòng năm 2025
TỔNG HỢP CÁC CHỦ ĐỀ TRỌNG TÂM TOÁN 9 CHƯƠNG TRÌNH MỚI
Từ khóa » Các Ví Dụ Về Căn Bậc 2
-
Trong Toán Học, Căn Bậc Hai Của Một Số A Là Một Số X Sao Cho X2 = A, Hay Nói Cách Khác Là Số X Mà Bình Phương Lên Thì = A. Ví Dụ, 4 Và −4 Là Căn Bậc Hai Của 16 Vì 42 = (−4)2 = 16. ... Dưới Dạng Mở Rộng Thập Phân.
-
Định Nghĩa Căn Thức Bậc Hai Là Gì? - DINHNGHIA.VN
-
Căn Bậc 2, Cách Tính Căn Bậc 2
-
Căn Bậc Hai
-
Lý Thuyết Về Căn Bậc Hai | SGK Toán Lớp 9
-
Căn Bậc 2, Công Thức Tính Căn Bậc 2 Và Bài Tập - Toán 9 Bài 1
-
[Định Nghĩa] [Tính Chất] Căn Bậc Hai - Công Thức Toán - Ibaitap
-
Các Dạng Toán Về Căn Bậc 2, Căn Bậc 3 Và Cách Giải - Toán Lớp 9
-
Căn Bậc Hai Lớp 9 - Khái Niệm Và Các định Lý Liên Quan
-
Căn Bậc 2 Là Gì? Đâu Là Cách Tính Căn Bậc 2 Lớp 7 Chuẩn Nhất? - VOH
-
Căn Bậc 2 Của Một Số Và Các Tính Chất đầy đủ Nhất Tón Học Lớp 9
-
Cách Tính Căn Bậc Hai + Bài Tập Vận Dụng - Babelgraph
-
Định Nghĩa, Công Thức Khai Căn Bậc 2, Bậc 3, Bậc N - TopLoigiai