Lý Thuyết Về Căn Bậc Ba. | SGK Toán Lớp 9
Có thể bạn quan tâm
1. Định nghĩa
+ Căn bậc ba của một số a là số x sao cho \(x^3=a\)
+ Căn bậc ba của số a được kí hiệu là \(\root 3 \of a \)
Như vậy \({\left( {\root 3 \of a } \right)^3} = a\)
Mọi số thực đều có căn bậc ba.
2. Các tính chất
a) \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
b) \(\root 3 \of {ab} = \root 3 \of a .\root 3 \of b \)
c) Với b ≠ 0, ta có \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of a } \over {\root 3 \of b }}\)
3. Áp dụng
Từ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:
a) \(a\root 3 \of b = \root 3 \of {{a^3}b} \)
b) \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of {a{b^2}} } \over b}\)
c) Áp dụng hằng đẳng thức \(\left( {A \pm B} \right)\left( {{A^2} \mp AB + {B^2}} \right) = {A^3} \pm {B^3}\), ta có:
\(\eqalign{ & \left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right) \cr & = {\left( {\root 3 \of a } \right)^3} \pm {\left( {\root 3 \of b } \right)^3} = a \pm b \cr} \)
Do đó
\(\eqalign{ & {M \over {\root 3 \of a \pm \root 3 \of b }} \cr & = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {\left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)}} \cr & = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {a \pm b}} \cr} \)
4. Các dạng toán cơ bản
Dạng 1: Tính giá trị biểu thức
Sử dụng: \({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\)
Ví dụ: \(\sqrt[3]{{64}} = \sqrt[3]{{{4^3}}} = 4\)
Dạng 2: So sánh các căn bậc ba
Sử dụng: \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
Ví dụ: So sánh 3 và \(\sqrt[3]{{26}}\)
Ta có: \(3 = \sqrt[3]{{27}}\) mà \(26<27\) nên \(\sqrt[3]{{26}} < \sqrt[3]{{27}} \Leftrightarrow \sqrt[3]{{26}} < 3\)
Dạng 3: Giải phương trình chứa căn bậc ba
Sử dụng: \(\sqrt[3]{A} = B \Leftrightarrow A = {B^3}\)
Ví dụ:
\(\begin{array}{l}\sqrt[3]{{x - 1}} = 2\\ \Leftrightarrow x - 1 = {2^3}\\ \Leftrightarrow x - 1 = 8\\ \Leftrightarrow x = 9\end{array}\)

Loigiaihay.com
Từ khóa » Trục Căn Dưới Mẫu Của Biểu Thức 9 - 2 Căn 3 Trên 3 Căn 6 - 2 Căn 2 Là
-
Trục Căn Thức ở Mẫu Và Rút Gọn (nếu được): (9 - 2 Căn3)/(3 Căn6
-
Trục Căn Thức ở Mẫu Và Rút Gọn (nếu được): (9 - 2 Căn3)/(3 Căn6
-
Trục Căn: 9-2√3/3√6
-
Trục Căn Thức ở Mẫu Và Rút Gọn: \( \displaystyle{{9 - 2\sqrt 3 } \over {3 ...
-
Trục Căn Thức ở Mẫu Và Rút Gọn: (9 - 2√3 - 5)/(3√6 - 2√2)
-
Trục Căn Thức ở Mẫu Và Rút Gọn (nếu được): A) (√5 - √3) / √2 - Lazi
-
Trục Căn Thức ở Mẫu Của Biểu Thức: Lý Thuyết Và Bài Tập
-
Trục Căn Thức ở Mẫu Toán 9 - Chuyên đề Rút Gọn Biểu Thức Lớp 9
-
Trục Căn Thức ở Mẫu Lớp 9 Ôn Tập Toán 9
-
Trục Căn Thức ở Mẫu Biểu Thức ((3)((6 + Căn (3a) )) ) Với (a >
-
Câu 69 Trang 16 SBT Toán 9 Tập 1: Trục Căn Thức ở Mẫu Và Rút Gọn ...
-
Câu 76 Trang 17 SBT Toán 9 Tập 1: Trục Căn Thức ở Mẫu
-
Trục Căn Thức ở Mẫu Biểu Thức 4/ (3 Căn X + 2 Căn Y) Với X >= 0
-
Ôn Tập Toàn Dạng Bài Rút Gọn Biểu Thức Căn Bậc Hai. - Vinastudy