Lý Thuyết Về Căn Bậc Ba. | SGK Toán Lớp 9
Có thể bạn quan tâm
1. Định nghĩa
+ Căn bậc ba của một số a là số x sao cho \(x^3=a\)
+ Căn bậc ba của số a được kí hiệu là \(\root 3 \of a \)
Như vậy \({\left( {\root 3 \of a } \right)^3} = a\)
Mọi số thực đều có căn bậc ba.
2. Các tính chất
a) \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
b) \(\root 3 \of {ab} = \root 3 \of a .\root 3 \of b \)
c) Với b ≠ 0, ta có \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of a } \over {\root 3 \of b }}\)
3. Áp dụng
Từ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:
a) \(a\root 3 \of b = \root 3 \of {{a^3}b} \)
b) \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of {a{b^2}} } \over b}\)
c) Áp dụng hằng đẳng thức \(\left( {A \pm B} \right)\left( {{A^2} \mp AB + {B^2}} \right) = {A^3} \pm {B^3}\), ta có:
\(\eqalign{ & \left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right) \cr & = {\left( {\root 3 \of a } \right)^3} \pm {\left( {\root 3 \of b } \right)^3} = a \pm b \cr} \)
Do đó
\(\eqalign{ & {M \over {\root 3 \of a \pm \root 3 \of b }} \cr & = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {\left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)}} \cr & = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {a \pm b}} \cr} \)
4. Các dạng toán cơ bản
Dạng 1: Tính giá trị biểu thức
Sử dụng: \({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\)
Ví dụ: \(\sqrt[3]{{64}} = \sqrt[3]{{{4^3}}} = 4\)
Dạng 2: So sánh các căn bậc ba
Sử dụng: \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
Ví dụ: So sánh 3 và \(\sqrt[3]{{26}}\)
Ta có: \(3 = \sqrt[3]{{27}}\) mà \(26<27\) nên \(\sqrt[3]{{26}} < \sqrt[3]{{27}} \Leftrightarrow \sqrt[3]{{26}} < 3\)
Dạng 3: Giải phương trình chứa căn bậc ba
Sử dụng: \(\sqrt[3]{A} = B \Leftrightarrow A = {B^3}\)
Ví dụ:
\(\begin{array}{l}\sqrt[3]{{x - 1}} = 2\\ \Leftrightarrow x - 1 = {2^3}\\ \Leftrightarrow x - 1 = 8\\ \Leftrightarrow x = 9\end{array}\)

Loigiaihay.com
Từ khóa » Căn A Bằng B điều Kiện
-
PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH ~ GIÁ TRỊ TUYỆT ĐỐI
-
Công Thức Về Phương Trình Và Bất Phương Trình Chứa Căn
-
Căn A Lớn Hơn Hoặc Bằng B - Công Thức Bất Phương Trình Chứa ...
-
Thắc Mắc Về điều Kiện Của Phuơng Trình Chứa Căn - HOCMAI Forum
-
Công Thức Bất Phương Trình Chứa Căn A Lớn Hơn Hoặc Bằng B ...
-
Công Thức Bất Phương Trình Chứa Căn
-
Căn Thức Bậc Hai Và Hằng đẳng Thức Căn A Mũ Hai Bằng Giá Trị Tuyệt ...
-
Căn Thức Bậc Hai - Lý Thuyết Toán 9
-
Cách Giải Phương Trình Chứa Dấu Căn Và Bài Tập Vận Dụng
-
Cách Giải Bất Phương Trình Chứa Căn Chi Tiết - Marathon Education
-
Giải Bất Phương Trình Chứa Dấu Giá Trị Tuyệt Đối - Marathon
-
Căn Thức Bậc Hai Và Hằng đẳng Thức √A2=|A| (căn A Bình Phương ...
-
Bài Tập Phương Trình Chứa Căn Bậc Hai (có Lời Gải Chi Tiết)