Mercury(II) Hydride - Wikipedia

Mercury(II) hydride
computed structure of HgH2 and (HgH2)2
Names
IUPAC name Mercury(II) hydride
Other names Mercurane Mercuric hydride
Identifiers
3D model (JSmol)
  • Interactive image
PubChem CID
  • 19021138
InChI
  • InChI=1S/Hg.2HKey: JUQLLZUJMFHASM-UHFFFAOYSA-N
SMILES
  • [H][Hg][H]
Properties
Chemical formula HgH2
Molar mass 202.61 g mol−1
Related compounds
Related compounds Zinc hydride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). Infobox references
Chemical compound

Mercury(II) hydride (systematically named mercurane(2) and dihydridomercury) is an inorganic compound with the chemical formula HgH2 (also written as [HgH2]). It is both thermodynamically and kinetically unstable at ambient temperature, and as such, little is known about its bulk properties. However, it can also be a white, crystalline solid, which is kinetically stable at temperatures below −125 °C (−193 °F), which was synthesized for the first time in 1951.[1]

Mercury(II) hydride is the second simplest mercury hydride (after the significantly less stable mercury(I) hydride). Due to its instability, it has no practical industrial uses. However, in analytical chemistry, mercury(II) hydride is fundamental to certain forms of spectrometric techniques used to determine mercury content. In addition, it is investigated for its effect on high sensitivity isotope-ratio mass spectrometry methods that involve mercury, such as MC-ICP-MS, when used to compare thallium to mercury.[2]

Properties

[edit]

Structure

[edit]

In solid mercury(II) hydride, the HgH2 molecules are connected by mercurophilic bonds. Trimers and a lesser proportion of dimers are detected in the vapour. Unlike solid zinc(II), and cadmium(II) hydride, which are network solids, solid mercury(II) hydride is a covalently bound molecular solid. This is due to relativistic effects, which also accounts for the relatively low decomposition temperature of -125 °C.[3]

The HgH2 molecule is linear and symmetric in the form H-Hg-H. The bond length is 1.646543 Å. The antisymmetric stretching frequency, ν3 of the bond is 1912.8 cm−1, 57.34473 THz for isotopes 202Hg and 1H.[3] The energy needed to break the Hg-H bond in HgH2 is 70 kcal/mol. The second bond in the resulting HgH is much weaker only needing 8.6 kcal/mol to break. Reacting two hydrogen atoms releases 103.3 kcal/mol, and so HgH2 formation from hydrogen molecules and Hg gas is endothermic at 24.2 kcal/mol.[3]

Biochemistry

[edit]

Alireza Shayesteh et al conjectured that bacteria containing the flavoprotein mercuric reductase, such as Escherichia coli, can in theory reduce soluble mercury compounds to volatile HgH2, which should have a transient existence in nature.

Production

[edit]

Mercury(II) chloride reduction

[edit]

Mercury(II) hydride may be prepared by the reduction of mercury(II) chloride. In this process, mercury(II) chloride and a hydride salt equivalent react to produce mercury(II) hydride according to the following equations, which depend on the stoichiometry of the reaction:

HgCl2 + 2 HHgCl2−4 + HgH2 HgCl2 + 2 HHgH2 + 2 Cl

Variations of this method exits where mercury(II) chloride is substituted for its heavier halide homologues.

Direct synthesis

[edit]

Mercury(II) hydride can also be generated by direct synthesis from the elements in the gas phase or in cryogenic inert gas martices:[3]

Hg → Hg* Hg* + H2 → [HgH2]* [HgH2]* → HgH2

This requires excitation of the mercury atom to the 1P or 3P state, as atomic mercury in its ground-state does not insert into the dihydrogen bond.[3] Excitation is accomplished by means of an ultraviolet-laser,[1] or electric discharge.[3] The initial yield is high; however, due to the product being in an excited state, a significant amount dissociates rapidly into mercury(I) hydride, then back into the initial reagents:

2 [HgH2]* → 2 HgH + H2 2 HgH → Hg2H2 Hg2H2 → 2 Hg + H2

This is the preferred method for matrix isolation research. Besides mercury(II) hydride, it also produces other mercury hydrides in lesser quantities, such as the mercury(I) hydrides (HgH and Hg2H2).

Reactions

[edit]

Upon treatment with a Lewis base, mercury(II) hydride converts to an adduct. Upon treatment with a standard acid, mercury(II) hydride and its adducts convert either to a mercury salt or a mercuran(2)yl derivative and elemental hydrogen.[citation needed] Oxidation of mercury(II) hydride gives elemental mercury.[citation needed] Unless cooled below −125 °C (−193 °F), mercury(II) hydride decomposes to produce elemental mercury and hydrogen:[4]

HgH2 → Hg + H2

History

[edit]

Mercury(II) hydride was successfully synthesized and identified in 1951 by Egon Wiberg and Walter Henle, by the reaction of mercury(II) iodide and lithium tetrahydroaluminate in a mixture of petroleum ether and tetrahydrofuran. In 1993 Legay-Sommaire announced HgH2 production in cryogenic argon and krypton matrices with a KrF laser.[1] In 2004, solid HgH2 was definitively synthesized and consequentially analysed, by Xuefeng Wang and Lester Andrews, by direct matrix isolation reaction of excited mercury with molecular hydrogen.[4] In 2005, gaseous HgH2 was synthesized by Alireza Shayesteh et al, by the direct gas-phase reaction of excited mercury with molecular hydrogen at standard temperature;[5] and Xuefeng Wang and Lester Andrews[4] determined the structure of solid mercury HgH2, to be a molecular solid.

References

[edit]
  1. ^ a b c Legay-Sommaire, N.; F. Legay (1993). "Photochemistry in Hg doped matrices. Infrared spectra of mercury hydrides: HgH2, HgD2, HHgD, HgD". Chemical Physics Letters. 207 (2–3): 123–128. Bibcode:1993CPL...207..123L. doi:10.1016/0009-2614(93)87001-j. ISSN 0009-2614.
  2. ^ Yin, Runsheng; Krabbenhoft, David; Bergquist, Bridget; Zheng, Wang; Lepak, Ryan; Hurley, James (2016). "Effects of mercury and thallium concentrations on high precision determination of mercury isotopic composition by Neptune Plus multiple collector inductively coupled plasma mass spectrometry". Journal of Analytical Atomic Spectrometry. 31 (10): 2060–2068. doi:10.1039/C6JA00107F.
  3. ^ a b c d e f Shayesteh, Alireza; Shanshan Yu; Peter F. Bernath (2005). "Gaseous HgH2, CdH2, and ZnH2". Chemistry: A European Journal. 11 (16): 4709–4712. doi:10.1002/chem.200500332. ISSN 0947-6539. PMID 15912545.
  4. ^ a b c Wang, Xuefeng; Andrews, Lester (2005). "Mercury dihydride forms a covalent molecular solid". Physical Chemistry Chemical Physics. 7 (5): 750–9. Bibcode:2005PCCP....7..750W. doi:10.1039/b412373e. ISSN 1463-9076. PMID 19791358.
  5. ^ Shayesteh, Alireza; Yu, Shanshan; Bernath, Peter F. (2005). "Infrared Emission Spectra and Equilibrium Structures of Gaseous HgH2and HgD2". The Journal of Physical Chemistry A. 109 (45): 10280–10286. Bibcode:2005JPCA..10910280S. CiteSeerX 10.1.1.507.4752. doi:10.1021/jp0540205. ISSN 1089-5639. PMID 16833322.
  • v
  • t
  • e
Mercury compounds
Mercury(I)
  • HgH
  • Hg2H2
  • Hg2Br2
  • Hg2Cl2
  • Hg2F2
  • Hg2I2
  • Hg2(NO3)2
  • Hg2O
  • Hg2CO3
  • Hg2SO4
  • Hg2S (hypothetical)
Mercury(II)
  • HgH2
  • HgNH2Cl
  • HgSe
  • HgS
  • HgTe
  • Hg(O2CCH3)2
  • HgBr2
  • HgCl2
  • Hg(CN)2
  • HgF2
  • Hg(OH)2
  • HgI2
  • Hg(NO3)2
  • HgO
  • HgSO4
  • Hg(SCN)2
  • Hg(CNO)2
  • Hg3N2
  • Hg(Si(CH3)3)2
  • K2HgI4
Organomercury compounds
  • Hg(CH3)2
  • Hg(C2H5)2
  • Hg(C6H5)2
  • HgC6H5CH3CO2
  • HgC6H5OB(OH)2
  • HgC6H5NO3
  • HgC6H5CCl3
  • HgClC6H4CO2H
  • HgOHCH2CHOCH3CH2(NHCO)
  • C36H70HgO4
  • HgOHCH2CHOCH3CH2NHCOC6H4OCH2CO2H
  • Na2HgOHC6HOBrC6H2OBrOCHC6H4CO2
  • HgOC6H2CH3NO2
  • NaHgC2H5SC6H4CO2
Mercury(IV)
  • HgF4 (hypothetical)
Amalgams
  • Na(Hg)
  • Al(Hg)
  • K(Hg)
  • Au(Hg)
  • Tl(Hg)
  • Sn(Hg)
Mercury cations
  • Hg2+
  • Hg2+2
  • Hg2+3
  • Hg2+4
  • Hg4+3
  • HgCH+3
  • HgC2H+5
  • HgC6H+5
  • v
  • t
  • e
Binary compounds of hydrogen
Alkali metal (Group 1) hydrides
  • LiH
  • NaH
  • KH
  • RbH
  • CsH
Alkaline (Group 2) earth hydrides
Monohydrides
  • BeH
  • MgH
  • CaH
  • SrH
  • BaH
Dihydrides
  • BeH2
  • MgH2
  • CaH2
  • SrH2
  • BaH2
Group 13 hydrides
Boranes
  • BH3
  • BH
  • B2H6
  • B2H2
  • B2H4
  • B4H10
  • B5H9
  • B5H11
  • B6H10
  • B6H12
  • B10H14
  • B18H22
Alanes
  • AlH3
  • Al2H6
Gallanes
  • GaH3
  • Ga2H6
Indiganes
  • InH3
  • In2H6
Thallanes
  • TlH3
  • Tl2H6
Nihonanes (predicted)
  • NhH
  • NhH3
  • Nh2H6
  • NhH5
Group 14 hydrides
Hydrocarbons
  • alkanes
  • alkenes
  • alkynes
  • Cycloalkanes
  • Cycloalkenes
  • Cycloalkynes
  • Annulenes
  • CH
  • CH2
  • CH3
  • C2H
Silanes
  • SiH4
  • Si2H6
  • Si3H8
  • Si4H10
  • Si5H12
  • Si6H14
  • Si7H16
  • Si8H18
  • Si9H20
  • Si10H22
  • more...
Silenes
  • Si2H4
Silynes
  • Si2H2
  • SiH
Germanes
  • GeH4
  • Ge2H6
  • Ge3H8
  • Ge4H10
  • Ge5H12
Stannanes
  • SnH4
  • Sn2H6
Plumbanes
  • PbH4
Flerovanes (predicted)
  • FlH
  • FlH2
  • FlH4
Pnictogen (Group 15) hydrides
Azanes
  • NH3
  • N2H4
  • N3H5
  • N4H6
  • N5H7
  • N6H8
  • N7H9
  • N8H10
  • N9H11
  • N10H12
  • more...
Azenes
  • N2H2
  • N3H3
  • N4H4
Phosphanes
  • PH3
  • P2H4
  • P3H5
  • P4H6
  • P5H7
  • P6H8
  • P7H9
  • P8H10
  • P9H11
  • P10H12
  • more...
Phosphenes
  • P2H2
  • P3H3
  • P4H4
Arsanes
  • AsH3
  • As2H4
Stibanes
  • SbH3
Bismuthanes
  • BiH3
Moscovanes
  • McH3 (predicted)
  • HN3
  • NH
  • HN5
  • NH5 (hypothetical)
Hydrogen chalcogenides (Group 16 hydrides)
Polyoxidanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • more...
  • Polysulfanes
    • H2S
    • H2S2
    • H2S3
    • H2S4
    • H2S5
    • H2S6
    • H2S7
    • H2S8
    • H2S9
    • H2S10
    • more...
    Selanes
    • H2Se
    • H2Se2
    Tellanes
    • H2Te
    • H2Te2
    Polanes
    • PoH2
    Livermoranes
    • LvH2 (predicted)
    • HO
    • HO2
    • HO3
    • H2O+–O– (hypothetical)
    • HS
    • HDO
    • D2O
    • T2O
    Hydrogen halides (Group 17 hydrides)
  • HF
  • HCl
  • HBr
  • HI
  • HAt
  • HTs (predicted)
  • Transition metal hydrides
    • ScH2
    • YH2
    • YH3
    • YH6
    • YH9
    • LuH2
    • LuH3
    • TiH2
    • TiH4
    • ZrH2
    • ZrH4
    • HfH2
    • HfH4
    • VH
    • VH2
    • NbH
    • NbH2
    • TaH
    • TaH2
    • CrH
    • CrH2
    • CrHx
    • FeH
    • FeH2
    • FeH5
    • CoH2
    • RhH2
    • IrH3
    • NiH
    • PdHx (x < 1)
    • PtHx (x< 1)
    • DsH2 (predicted)
    • CuH
    • RgH (predicted)
    • ZnH2
    • CdH2
    • HgH
    • Hg2H2
    • HgH2
    • CnH2 (predicted)
    Lanthanide hydrides
    • LaH2
    • LaH3
    • LaH10
    • CeH2
    • CeH3
    • PrH2
    • PrH3
    • NdH2
    • NdH3
    • SmH2
    • SmH3
    • EuH2
    • GdH2
    • GdH3
    • TbH2
    • TbH3
    • DyH2
    • DyH3
    • HoH2
    • HoH3
    • ErH2
    • ErH3
    • TmH2
    • TmH3
    • YbH2
    • LuH2
    • LuH3
    Actinide hydrides
    • AcH2
    • ThH2
    • ThH4
    • Th4H15
    • PaH3
    • UH3
    • UH4
    • NpH2
    • NpH3
    • PuH2
    • PuH3
    • AmH2
    • AmH3
    • CmH2
    • BkH2
    • BkH3
    • CfH2
    • CfH3
    Exotic matter hydrides
    • PsH

    Từ khóa » Hgh2