Một Hình Chóp Có đáy Là Tam Giác đều Cạnh Bằng \(2\) Và Có Chiều ...

YOMEDIA NONE Một hình chóp có đáy là tam giác đều cạnh bằng \(2\) và có chiều cao bằng \(4.\) Tính thể tích khối chóp đó. ADMICRO
  • Câu hỏi:

    Một hình chóp có đáy là tam giác đều cạnh bằng \(2\) và có chiều cao bằng \(4.\) Tính thể tích khối chóp đó.

    • A. \(\frac{4\sqrt{3}}{3}\).
    • B. 2
    • C. 4
    • D. \(2\sqrt{3}\).

    Lời giải tham khảo:

    Đáp án đúng: A

    Ta có: \(B=\frac{{{2}^{2}}\sqrt{3}}{4}=\sqrt{3}\) (đvtt) \(\Rightarrow V=\frac{1}{3}Bh=\frac{1}{3}.\sqrt{3}.4=\frac{4\sqrt{3}}{3}\) (đvtt).

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 280807

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Hàn Thuyên lần 3

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Cho hàm số \(y={{x}^{3}}-6{{x}^{2}}+7x+5\) có đồ thị là \(\left( C \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 là:
  • Giá trị của giới hạn \(\underset{x\to -1}{\mathop{\lim }}\,\frac{{{x}^{3}}+2{{x}^{2}}+1}{{{x}^{2}}+1}\) là
  • Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên Tìm \(m\) để phương trình \(2f(x)+m=0\) có đúng \(3\) nghiệm phân biệt
  • Tìm số mặt của hình đa diện ở hình vẽ bên
  • Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
  • Cho hàm số\(y=\frac{ax+b}{cx+d}\)có đồ thị như hình vẽ dưới đây. Khẳng định nào sau đây đúng?
  • Số giao điểm của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-9x-2\) với trục hoành là:
  • Cho tứ diện \(OABC\) có \(OA\), \(OB\), \(OC\) đôi một vuông góc nhau và \(OA=OB\)\(=OC=3a\). Tính khoảng cách giữa hai đường thẳng \(AC\) và \(OB\).
  • Cho hàm số \(y=f(x)\) có bảng biến thiên như sau ​ Hàm số đã cho đồng biến trên khoảng nào dưới đây
  • Hàm số nào sau đây không có cực trị
  • Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ sau
  • Số đường tiệm cận của đồ thị hàm số \(y=\frac{3}{x-2}\) bằng
  • Một hình chóp có đáy là tam giác đều cạnh bằng \(2\) và có chiều cao bằng \(4.\) Tính thể tích khối chóp đó.
  • Cho hàm số \(y=f(x)\) có đồ thị hàm \(f'(x)\) như hình vẽ ​ Số điểm cực trị của hàm số đã cho là
  • Giá trị lớn nhất của hàm số \(f(x)=2{{x}^{4}}-3{{x}^{2}}+1\) trên đoạn \(\left[ 0;3 \right]\) bằng:
  • Số cách chia 15 học sinh thành 3 nhóm A, B, C lần lượt gồm 4, 5, 6 học sinh là:
  • Cho hàm số \(y=f(x)\) có bảng biến thiên như sau Hàm số đã cho đạt cực đại tại
  • Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA\bot \left( ABCD \right)\), \(SB=a\sqrt{3}\). Tính thể tích \(V\) của khối chóp \(S.ABCD\) theo \(a\).
  • Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)=2x-\frac{2}{{{x}^{2}}},\,\forall x\ne 0\) . Giá trị nhỏ nhất của hàm số trên \(\left( 0;+\infty \right)\) là
  • Cho hình chóp \(S.\,ABCD\) có đáy là hình vuông cạnh \(a\), mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp \(S.\,ABCD\) là
  • Cho hàm số \(f(x)=-\frac{1}{3}{{x}^{3}}+m{{x}^{2}}+\left( 3m+2 \right)x-5\) . Tập hợp các giá trị của tham số \(m\) để hàm số nghịch biến trên \(\mathbb{R}\) là \(\left[ a;\,b \right]\). Khi đó \(2a-b\) bằng
  • Tính tổng tất cả các nghiệm của phươg trình sau \({{3}^{2x+8}}-{{4.3}^{x+5}}+27=0\).
  • Hs \(y=\left| {{\left( x-1 \right)}^{3}}\left( x+1 \right) \right|\) có bao nhiêu điểm cực trị?
  • Cho hình chóp \(S.ABC\)có \(SA\) vuông góc với mặt phẳng \(\left( ABC \right),SA=a,AB=a\),\(AC=2a,\) \(\widehat{BAC}={{60}^{0}}.\) Tính diện tích hình cầu ngoại tiếp hình chóp \(S.ABC\).
  • Đặt \({{\log }_{2}}5=a\), \({{\log }_{3}}2=b\). Tính \({{\log }_{15}}20\) theo \(a\) và \(b\) ta được
  • Cho hình chóp \(S.ABC\) có \(\Delta ABC\) vuông tại \(B\), \(BA=a\), \(BC=a\sqrt{3}\). Cạnh bên \(SA\) vuông góc với đáy và \(SA=a\). Tính bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\).
  • Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(\frac{a\sqrt{5}}{2}\). Số đo góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( ABCD \right)\) là:
  • Tính thể tích \(V\) của khối lăng trụ tứ giác đều \(ABCD.{A}'{B}'{C}'{D}'\) biết độ dài cạnh đáy của lăng trụ bằng \(2\) đồng thời góc tạo bởi \({A}'C\) và đáy \(\left( ABCD \right)\) bằng \(30{}^\circ \).
  • Cho hình chóp \(S.ABCD\), đáy là hình chữ nhật tâm \(O\), \(AB=a\), \(AD=a\sqrt{3}\), \(SA=3a\), \(SO\) vuông góc với mặt đáy \(\left( ABCD \right)\). Thể tích khối chóp \(S.ABC\) bằng
  • Hình vẽ bên dưới là đồ thị của hàm số nào?
  • Cho \(a>1\). Mệnh đề nào sau đây là đúng?
  • Tỷ lệ tăng dân số hàng năm của Việt Nam là 1,07%. Năm 2016, dân số của Việt Nam là 93.422.000 người. Hỏi với tỷ lệ tăng dân số như vậy thì năm 2026 dân số Việt Nam gần với kết quả nào nhất?
  • Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\), góc giữa \(A'D\) và \(CD'\)bằng:
  • Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy là tam giác vuông cân tại \(A\), \(AB=AC=a\), \(A{A}'=\sqrt{2}a\). Thể tích khối cầu ngoại tiếp hình tứ diện \(A{B}'{A}'C\) là
  • Cho hình chóp \(S.ABCD\) có \(SA\bot \left( ABCD \right)\), đáy \(ABCD\) là hình chữ nhật với\(AC=a\sqrt{3}\)và \(BC=a\). Tính khoảng cách giữa \(SD\) và \(BC\).
  • Cho hàm số \(y=\frac{x+m}{x-1}\) có đồ thị là đường cong \(\left( H \right)\) và đường thẳng \(\Delta \) có phương trình \(y=x+1\). Số giá trị nguyên của tham số \(m\) nhỏ hơn 10 để đường thẳng \(\Delta \) cắt đường cong \(\left( H \right)\) tại hai điểm phân biệt nằm về hai nhánh của đồ thị.
  • Số giá trị nguyên của tham số \(m\) để hàm số \(y=m{{x}^{4}}-\left( m-3 \right){{x}^{2}}+{{m}^{2}}\) không có điểm cực đại là
  • Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy \(ABC\) là tam giác vuông tại \(A\). Biết \(AB=A{A}'=a\), \(AC=2a\). Gọi \(M\) là trung điểm của \(AC\). Diện tích mặt cầu ngoại tiếp tứ diện \(M{A}'{B}'{C}'\) bằng
  • Tìm \(m\) để tiếp tuyến của đồ thị hàm số \(\left( C \right):y=\left( 2m-1 \right){{x}^{4}}-m{{x}^{2}}+8\) tại điểm có hoành độ \(x=1\) vuông góc với đường thẳng \(\left( d \right):2x-y-3=0\).
  • Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy \(ABC\) là tam giác vuông tại \(A\), gọi \(M\) là trung điểm của cạnh \(AA'\), biết rằng \(AB=2a;\)\(BC=a\sqrt{7}\) và \(\text{AA}'=6a\). Khoảng cách giữa \(\text{A }\!\!'\!\!\text{ B}\) và \(CM\) là:
  • Cho tứ diện \(ABCD\) có \(AC=AD=BC=BD=1\), mặt phẳng\(\left( ABC \right)\bot (ABD)\) và \(\left( ACD \right)\bot (BCD)\). Khoảng cách từ \(A\) đến mặt phẳng \(\left( BCD \right)\)là:
  • Cho hàm đa thức \(y=f(x)\). Hàm số \(y=f'(x)\) có đồ thị như hình vẽ sau Có bao nhiêu giá trị của \(m\in \left[ 0;\,6 \right];\,2m\in \mathbb{Z}\) để hàm số \(g(x)=f\left( {{x}^{2}}-2\left| x-1 \right|-2x+m \right)\) có đúng \(9\) điểm cực trị?
  • Cho hàm số \(y=f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y=\frac{1}{f\left( x \right)+2}\) có tất cả bao nhiêu đường tiệm cận?
  • Cho hàm số \(f(x)\) liên tục trên \(\left[ 2;4 \right]\) và có bảng biến thiên như hình vẽ bên Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(x+2\sqrt{{{x}^{2}}-2x}=m.f(x)\) có nghiệm thuộc đoạn \(\left[ 2;4 \right]\) ?
  • Cho hàm số \(y=\left( x+1 \right)\left( 2x+1 \right)\left( 3x+1 \right)\left( m+\left| 2x \right| \right)\) và \(y=-12{{x}^{4}}-22{{x}^{3}}-{{x}^{2}}+10x+3\) có đồ thị lần lượt là \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\) . có bao nhiêu giá trị nguyên của tham số \)m\) trên đoạn \(\left[ -2020;2020 \right]\) để \(\left( {{C}_{1}} \right)\) cắt \(\left( {{C}_{2}} \right)\) tại \(3\) điểm phân biệt.
  • Cho hình chóp \(S.ABC\) có \(SA=x\), \(BC=y\), \(AB=AC=SB=SC=1\). Thể tích khối chóp \(S.ABC\) lớn nhất khi tổng \(\left( x+y \right)\) bằng
  • Một hộp đựng 3 viên bi màu xanh, 5 viên bi màu đỏ, 6 viên bi màu trắng và 7 viên bi màu đen. Chọn ngẫu nhiên đồng thời từ hộp 4 viên bi, tính xác suất để 4 viên bi được chọn không nhiều hơn 3 màu và luôn có bi màu xanh?
  • Cho \(4\) số \(a,\,b,\,c,\,d\) thỏa mãn điều kiện \({{a}^{2}}+{{b}^{2}}=4a+6b-9\) và \(3c+4d=1\). Tìm giá trị nhỏ nhất của biểu thức \(P={{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}\) ?
  • Cho \(x,y\) là các số thực thỏa mãn \({{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+2y \right)\). Giá trị tỉ số \(\frac{x}{y}\) là
  • Cho hình chóp \(S.ABCD\) có đáy là hình vuông, cạnh bên \(SA\) vuông góc với đáy. Gọi \(M\), \(N\) là trung điểm của \(SA\), \(SB\). Mặt phẳng \(MNCD\) chia hình chóp đã cho thành hai phần. tỉ số thể tích hai phần \(S.MNCD\) và \(MNABCD\) là
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Giải tích 12 Chương 3

Đề thi giữa HK1 môn Toán 12

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn bài Người lái đò sông Đà

Đề thi giữa HK1 môn Ngữ Văn 12

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 7 Lớp 12 Economic Reforms

Tiếng Anh 12 mới Review 1

Đề thi giữa HK1 môn Tiếng Anh 12

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Vật lý 12 Chương 3

Đề thi giữa HK1 môn Vật Lý 12

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Hoá Học 12 Chương 4

Đề thi giữa HK1 môn Hóa 12

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 5

Đề thi giữa HK1 môn Sinh 12

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Đề thi giữa HK1 môn Lịch Sử 12

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

Đề thi giữa HK1 môn Địa lý 12

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Đề thi giữa HK1 môn GDCD 12

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Đề thi giữa HK1 môn Công nghệ 12

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Đề thi giữa HK1 môn Tin học 12

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

Sóng- Xuân Quỳnh

Người lái đò sông Đà

Quá trình văn học và phong cách văn học

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Đất Nước- Nguyễn Khoa Điềm

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Hình Chóp Có đáy Tam Giác đều