Nguyên Hàm Ln X Là Gì? Tính Nguyên Hàm Ln, Cách Giải Bài Tập
Có thể bạn quan tâm
Trong chương trình toán học Giải tích lớp 12, các em sẽ được học về hàm số ln x và cách tính nguyên hàm ln x. Đây cũng là dạng toán thường gặp trong các đề thi học kỳ, đề thi THPTQG. Vì thế, nếu các em muốn có được điểm số tuyệt đối thì cần phải ghi nhớ chính xác lý thuyết và các công thức tính. Trong bài viết này, Marathon Education sẽ cùng các em ôn tập cách tính nguyên hàm ln x và tổng hợp những bài tập cụ thể để các em tham khảo.
Xem thêm: Toán 12 Nguyên Hàm – Lý Thuyết Và Một Số Bài Tập Ví Dụ
Nguyên hàm ln x là gì?
Ta có hàm số f(x) xác định trên H. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên H khi F(x)’=f(x), với mọi x trên H. Nguyên hàm ln x được tính như sau:
\begin{aligned} &\text{Đặt u}=\begin{cases}u=lnx\\dv=dx \end{cases}\rArr \begin{cases}du=\frac{1}{x}dx\\v=x \end{cases}\\ &\text{Ta có} \intop ln\space xdx=xlnx-\lmoustache dx=xlnx-x+C \end{aligned}Logarit tự nhiên ln x là gì?
Logarit cơ số e của một số dương x được gọi là logarit tự nhiên (hay còn gọi là logarit Nê-pe) của số x, ký hiệu là ln x.
Ln x = a ⇔ x = ea (x>0) với e~2,71828…
Tính chất của hàm số logarit tự nhiên ln x: Logarit tự nhiên có đầy đủ tính chất của logarit với cơ số lớn hơn 1.
>>> Xem thêm: Công Thức Tính Nguyên Hàm e Mũ u Và Các Hàm Số Đơn Giản
Bảng nguyên hàm cơ bản
Bảng nguyên hàm dưới đây tổng hợp công thức nguyên hàm cơ bản mà các em nên học thuộc
Tính nguyên hàm ln x
Tính nguyên hàm của hàm số:
∫lnxdxHướng dẫn giải:
\begin{aligned} &\text{Đặt} \begin{cases} u=lnx\\dv=dx\end{cases}\Rightarrow \begin{cases} du=\frac1xdx\\v=x\end{cases}\\ &\text{Ta có: }∫lnxdx=xlnx-∫dx=xlnx-x+C \end{aligned} Hàm Số Bậc Nhất - Lý Thuyết Và Phương Pháp Giải Bài Tập ĐĂNG KÝ NGAYBài tập vận dụng tính nguyên hàm ln x
Dạng 1: Tính nguyên hàm ln x cơ bản
Bài tập 1: Các em hãy tìm nguyên hàm của hàm số sau:
∫xlnx.dxBài giải:
\begin{aligned} &\text{Đặt} \begin{cases} u=lnx\\dv=xdx\end{cases}\Rightarrow \begin{cases} du=\frac1xdx\\v=\frac{x^2}{2}\end{cases}\\ &\text{Ta có: }∫xlnx.dx=\frac{x^2}{2}lnx-∫\frac{x^2}{2}.\frac1xdx=\frac{x^2}{2}lnx-\frac12∫xdx=\frac{x^2}{2}lnx-\frac{x^2}{4}+C \end{aligned}Bài tập 2: Biết rằng:
\intop_1^2ln(x+1)dx=a.ln3+b.ln2+cBiết rằng a, b, c là những số nguyên, các em hãy tính tổng S = a + b + c.
Bài giải:
\begin{aligned} &\text{Đặt} \begin{cases} u=ln(x+1)\\dv=dx\end{cases}\Rightarrow \begin{cases} du=\frac{1}{x+1}dx\\v=x+1\end{cases}\\ &\text{Khi đó: }\\ &\intop_1^2ln(x+1)dx=(x+1).ln(x+1)|_1^2-\intop_1^2dx=3ln3-2ln2-1\\ &\text{Vậy }a=3,b=-2,c=-1\\ &\Rightarrow S=a+b+c=0 \end{aligned}Dạng 2: Tính nguyên hàm ln x chứa phân thức
Bài tập 1: Các em hãy tính nguyên hàm của hàm số:
\int\frac{lnx.dx}{x}Bài giải:
\begin{aligned} &\text{Đặt }t=lnx \Rightarrow dt=\frac1xdx\\ &\text{Ta có: }\int\frac{lnx.dx}{x}=\int tdt=\frac{t^2}{2}+C=\frac{ln^2x}{2}=C \end{aligned}Dạng 3: Tính nguyên hàm ln x chứa căn thức
Bài tập 1: Các em hãy tính nguyên hàm ln x của hàm số:
I=\int\frac{1}{x\sqrt{lnx+1}}dxBài giải:
\begin{aligned} &\text{Đặt }t=\sqrt{lnx+1} \Rightarrow t^2=lnx+1 \Rightarrow 2t.dt=\frac1xdx\\ &I=\int\frac{1}{x\sqrt{lnx+1}}dx=\int\frac{2t.dt}{t}=\int2dt=2t+C=2\sqrt{lnx+1}+C \end{aligned}Gia sư Online Học Online Toán 12 Học Online Hóa 10 Học Online Toán 11 Học Online Toán 6 Học Online Toán 10 Học Online Toán 7 Học Online Lý 10 Phương trình lượng giác cơ bản và các dạng bài tập có lời giải Học Online Lý 9 Học Online Toán 8 Học Online Toán 9 Học Tiếng Anh 6 Học Tiếng Anh 7Tham khảo ngay các khoá học online của Marathon Education
Qua bài viết trên, Team Marathon Education đã tổng hợp cho các em những kiến thức về hàm logarit tự nhiên ln x, cách tính nguyên hàm ln x và những dạng bài tập cụ thể. Các em hãy tham khảo và đừng quên áp dụng thường xuyên.
Hãy liên hệ ngay với Marathon để được tư vấn nếu các em có nhu cầu học trực tuyến nâng cao kiến thức nhé! Marathon Education chúc các em được điểm cao trong các bài kiểm tra và kỳ thi sắp tới!
Từ khóa » Tìm Nguyên Hàm Ln^2x
-
Tìm Nguyên Hàm Của Hàm Số F(x)=ln^2x/x
-
Tìm Nguyên Hàm ( Log Tự Nhiên Của X^2)/x | Mathway
-
Nguyên Hàm Ln 2x
-
Tìm Nguyên Hàm: I=∫ln^2 X+1 / X Dx
-
[LỜI GIẢI] Nguyên Hàm Của Hàm Số F( X ) = Ln 2x X Bằng? - Tự Học 365
-
Họ Nguyên Hàm Của Hàm Số F(x)= Ln(2x) Là Câu Hỏi 2081360
-
Nguyên Hàm Ln 2x
-
Bảng Các Công Thức Nguyên Hàm Từ Căn Bản Tới Nâng Cao - Công ...
-
Tìm Nguyên Hàm (2x-1)lnxdx A. (x-x^2)lnx+x^2/2-x+c...
-
Họ Nguyên Hàm Của Hàm Số (f(x)=x Ln 2 X Text { Là }) - Sách Toán
-
Tìm Nguyên Hàm Của I= Tích Phân ((x+1)lnx)/x Dx. I=xlnx ... - Thi Online
-
Tìm Nguyên Hàm Của (ln X/(2+ln X))^2 - Quế Anh - HOC247