Nguyên Hàm Tan^2 X - Tính Nguyên Hàm

Nguyên hàm tan 2x

  • Họ nguyên hàm tan2 x 
  • Đạo hàm hàm số y = tan2x - cotx2
  • Tập xác định của hàm số y = tan2x
  • Đồ thị hàm số y = tan2x

Để giúp các bạn học sinh lớp 12 học tập tốt hơn môn Toán, GiaiToan.com xin mời quý thầy cô và các bạn học sinh tham khảo tài liệu Công thức Toán 12: Nguyên hàm tan^2x.Bộ tài liệu có hướng dẫn chi tiết cách tìm nguyên hàm được xây dựng dựa trên kiến thức trọng tâm chương trình Toán 12 và các câu hỏi trong đề thi THPT Quốc gia. Hi vọng tài liệu này sẽ giúp các bạn ôn thi THPT Quốc gia môn Toán trắc nghiệm hiệu quả.

Họ nguyên hàm tan2 x

\int {{{\tan }^2}xdx = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx = \tan x - x + C} }

Đạo hàm hàm số y = tan2x - cotx2

Ta có:

\begin{matrix}    \left( {{{\tan }^2}x} \right)\prime  = 2 \cdot \tan x \cdot (\tan x)\prime  \hfill \\     = 2 \cdot \tan x \cdot \dfrac{1}{{{{\cos }^2}x}} \hfill \\    \left( {\cot {x^2}} \right)\prime  =  - \dfrac{{\left( {{x^2}} \right)\prime }}{{{{\sin }^2}{x^2}}} = \dfrac{{ - 2x}}{{{{\sin }^2}{x^2}}} \hfill \\     =   y\prime  = \left( {{{\tan }^2}x - \cot {x^2}} \right)\prime  \hfill \\     = \left( {{{\tan }^2}x} \right)\prime  - \left( {\cot {x^2}} \right)\prime  \hfill \\     = 2 \cdot \tan x \cdot \dfrac{1}{{{{\cos }^2}x}} - \dfrac{{ - 2x}}{{{{\sin }^2}{x^2}}} \hfill \\     = 2 \cdot \tan x \cdot \dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}{x^2}}} \hfill \\   \end{matrix}

Tập xác định của hàm số y = tan2x

Điều kiện: cos2 x ≠ 0 => x \ne \frac{\pi }{2} + k\pi ,\left( {k \in \mathbb{Z}} \right)

Đồ thị hàm số y = tan2x

Nguyên hàm tan^2 x

----------------------------------------------------

Trên đây GiaiToan đã giới thiệu đến thầy cô và học sinh tài liệu Nguyên hàm Toán 12, hy vọng tài liệu sẽ là công cụ hữu ích giúp học sinh ôn thi THPT Quốc gia hiệu quả.

Một số tài liệu liên quan:

  • Bài tập Thể tích hình trụ
  • Công thức tính thể tích hình nón
  • Công thức tính thể tích hình trụ

Từ khóa » đạo Hàm Tan^2(sin X)