Nhắc Lại Và Bổ Sung Khái Niệm Về Hàm Số Và đồ Thị Hàm Số

  1. Trang chủ
  2. Lý thuyết toán học
  3. Toán 9
  4. CHƯƠNG 2: HÀM SỐ BẬC NHẤT
  5. Nhắc lại và bổ sung khái niệm về hàm số và đồ thị hàm số
Nhắc lại và bổ sung khái niệm về hàm số và đồ thị hàm số Trang trước Mục Lục Trang sau

1. Các kiến thức cần nhớ

Khái niệm hàm số

+) Nếu đại lượng $y$ phụ thuộc vào đại lượng thay đổi $x$ sao cho với mỗi giá trị của $x$, ta luôn xác định được một và chỉ một giá trị tương ứng của $y$ thì $y$ gọi là hàm số của $x$ ($x$ gọi là biến số).Ta viết : $y = f\left( x \right)$, $y = g\left( x \right)$, …

+) Giá trị của hàm số $f\left( x \right)$ tại điểm ${x_0}$ kí hiệu là $f\left( {{x_0}} \right)$.

+) Tập xác định $D$ của hàm số $f\left( x \right)$ là tập hợp các giá trị của $x$ sao cho $f\left( x \right)$ có nghĩa.

+) Khi $x$ thay đổi mà $y$ luôn nhận một giá trị không đổi thì hàm số $y = f\left( x \right)$ gọi là hàm hằng.

Đồ thị của hàm số

Đồ thị của hàm số $y = f\left( x \right)$ là tập hợp tất cả các điểm $M\left( {x;y} \right)$ trong mặt phẳng tọa độ $Oxy$ sao cho $x,{\rm{ }}y$ thỏa mãn hệ thức $y = f\left( x \right)$

Hàm số đồng biến, nghịch biếnCho hàm số $y = f\left( x \right)$ xác định trên tập $D$. Khi đó :- Hàm số đồng biến trên $D $ $\Leftrightarrow \forall {x_1},{x_2} \in D:{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)$- Hàm số nghịch biến trên $D$ $ \Leftrightarrow \forall {x_1},{x_2} \in D:{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)$

2. Các dạng toán thường gặp

Dạng 1 : Tính giá trị của hàm số tại một điểm

Phương pháp:

Để tính giá trị ${y_0}$ của hàm số $y = f\left( x \right)$ tại điểm ${x_0}$ ta thay $x = {x_0}$ vào $f\left( x \right)$, ta được ${y_0} = f\left( {{x_0}} \right)$.

Dạng 2 : Biểu diễn tọa độ của một điểm và xác định điểm thuộc đồ thị hàm số

Phương pháp:

Điểm $M\left( {{x_0};{y_0}} \right)$ thuộc đồ thị hàm số $y = f\left( x \right)$ khi ${y_0} = f\left( {{x_0}} \right)$

Dạng 3 : Xét sự đồng biến và nghịch biến của hàm số

Phương pháp:

Bước 1: Tìm tập xác định $D$ của hàm số.

Bước 2: Giả sử ${x_1} < {x_2}$ và ${x_1},{x_2} \in D$. Xét hiệu $H = f\left( {{x_1}} \right) - f\left( {{x_2}} \right)$.

+ Nếu $H < 0$ với ${x_1},{x_2}$ bất kỳ thì hàm số đồng biến.

+ Nếu $H > 0$ với ${x_1},{x_2}$ bất kỳ thì hàm số nghịch biến.

Dạng 4 : Bài toán liên quan đến đồ thị hàm số $y = ax\left( {a \ne 0} \right)$

Phương pháp:

+) Đồ thị hàm số dạng $y = ax{\rm{ }}\left( {a \ne 0} \right)$ là đường thẳng đi qua gốc tọa độ $O$ và điểm $E\left( {1;a} \right)$.

+) Cho hai điểm $A\left( {{x_A};{y_A}} \right)$ và $B\left( {{x_B};{y_B}} \right)$. Khi đó độ dài đoạn thẳng $AB$ được tính theo công thức:$AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} $.

Trang trước Mục Lục Trang sau

Có thể bạn quan tâm:

  • Hàm số bậc nhất
  • Các tập hợp số
  • Công thức nghiệm thu gọn
  • Tính chất ba đường trung tuyến của tam giác
  • Các trường hợp bằng nhau của tam giác vuông

Từ khóa » Khi Nào Y được Gọi Là Hàm Số Của X Là Biến Số