Numpy.c_ — NumPy V1.23 Manual
Có thể bạn quan tâm
Skip to main content Back to top Ctrl+K
- User Guide
- API reference
- Building from source
- Development
- Release notes
- Learn
- NEPs
- GitHub
Section Navigation
- NumPy’s module structure
- Array objects
- Universal functions (ufunc)
- Routines and objects by topic
- Constants
- Array creation routines
- Array manipulation routines
- Bit-wise operations
- String functionality
- Datetime support functions
- Data type routines
- Mathematical functions with automatic domain
- Floating point error handling
- Exceptions and Warnings
- Discrete Fourier Transform
- Functional programming
- Input and output
- Indexing routines
- numpy.c_
- numpy.r_
- numpy.s_
- numpy.nonzero
- numpy.where
- numpy.indices
- numpy.ix_
- numpy.ogrid
- numpy.ravel_multi_index
- numpy.unravel_index
- numpy.diag_indices
- numpy.diag_indices_from
- numpy.mask_indices
- numpy.tril_indices
- numpy.tril_indices_from
- numpy.triu_indices
- numpy.triu_indices_from
- numpy.take
- numpy.take_along_axis
- numpy.choose
- numpy.compress
- numpy.diag
- numpy.diagonal
- numpy.select
- numpy.place
- numpy.put
- numpy.put_along_axis
- numpy.putmask
- numpy.fill_diagonal
- numpy.nditer
- numpy.ndenumerate
- numpy.ndindex
- numpy.nested_iters
- numpy.flatiter
- numpy.iterable
- Linear algebra
- Logic functions
- Masked array operations
- Mathematical functions
- Miscellaneous routines
- Polynomials
- Random sampling
- Set routines
- Sorting, searching, and counting
- Statistics
- Test support
- Window functions
- Typing (numpy.typing)
- Packaging
- NumPy C-API
- Array API standard compatibility
- CPU/SIMD optimizations
- Thread Safety
- Global Configuration Options
- NumPy security
- Testing guidelines
- Status of numpy.distutils and migration advice
- numpy.distutils user guide
- NumPy and SWIG
- NumPy reference
- Routines and objects by topic
- Indexing routines
- numpy.c_
Translates slice objects to concatenation along the second axis.
This is short-hand for np.r_['-1,2,0', index expression], which is useful because of its common occurrence. In particular, arrays will be stacked along their last axis after being upgraded to at least 2-D with 1’s post-pended to the shape (column vectors made out of 1-D arrays).
See also
column_stackStack 1-D arrays as columns into a 2-D array.
r_For more detailed documentation.
Examples
Try it in your browser! >>> importnumpyasnp >>> np.c_[np.array([1,2,3]), np.array([4,5,6])] array([[1, 4], [2, 5], [3, 6]]) >>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])] array([[1, 2, 3, ..., 4, 5, 6]]) Go BackOpen In Tab On this page- c_
Từ khóa » Np-c
-
Trung Tâm CSKH Điện Lực Miền Bắc
-
Tra Cứu - Trung Tâm CSKH Điện Lực Miền Bắc
-
NPC Là Gì? Bot Là Gì? Sự Khác Biệt Giữa NPC Và Bot
-
Python - What Does The C Underscore Expression `c_` Do Exactly?
-
Nhân Vật Không Phải Người Chơi – Wikipedia Tiếng Việt
-
NP-đầy đủ – Wikipedia Tiếng Việt
-
Salary For Certification: Nurse Practitioner, Certified (NP-C) - Payscale
-
Giới Thiệu Về Numpy (một Thư Viện Chủ Yếu Phục Vụ Cho Khoa Học ...
-
Nurse Practitioner (NP) : MedlinePlus Medical Encyclopedia
-
FNP-BC Vs. FNP-C: What's The Difference? - Goodwin University
-
What Is Np.c_ And Np.r_ In Numpy ? | By Brijesh Goyal - Medium
-
4 Efficient Ways To Use The Numpy C_ Function - Python Pool
-
Provider Profile: Janice Baker, NP-C (Certified Nurse Practitioner)
-
Teresa Johnson, NP-C - Citizens Memorial Healthcare