Numpy.hstack — NumPy V1.23 Manual
- User Guide
- API reference
- Building from source
- Development
- Release notes
- Learn
- NEPs
- GitHub
Section Navigation
- NumPy’s module structure
- Array objects
- Universal functions (ufunc)
- Routines and objects by topic
- Constants
- Array creation routines
- Array manipulation routines
- numpy.copyto
- numpy.ndim
- numpy.shape
- numpy.size
- numpy.reshape
- numpy.ravel
- numpy.ndarray.flat
- numpy.ndarray.flatten
- numpy.moveaxis
- numpy.rollaxis
- numpy.swapaxes
- numpy.ndarray.T
- numpy.transpose
- numpy.permute_dims
- numpy.matrix_transpose
- numpy.atleast_1d
- numpy.atleast_2d
- numpy.atleast_3d
- numpy.broadcast
- numpy.broadcast_to
- numpy.broadcast_arrays
- numpy.expand_dims
- numpy.squeeze
- numpy.asarray
- numpy.asanyarray
- numpy.asmatrix
- numpy.asfortranarray
- numpy.ascontiguousarray
- numpy.asarray_chkfinite
- numpy.require
- numpy.concatenate
- numpy.concat
- numpy.stack
- numpy.block
- numpy.vstack
- numpy.hstack
- numpy.dstack
- numpy.column_stack
- numpy.split
- numpy.array_split
- numpy.dsplit
- numpy.hsplit
- numpy.vsplit
- numpy.unstack
- numpy.tile
- numpy.repeat
- numpy.delete
- numpy.insert
- numpy.append
- numpy.resize
- numpy.trim_zeros
- numpy.unique
- numpy.pad
- numpy.flip
- numpy.fliplr
- numpy.flipud
- numpy.roll
- numpy.rot90
- Bit-wise operations
- String functionality
- Datetime support functions
- Data type routines
- Mathematical functions with automatic domain
- Floating point error handling
- Exceptions and Warnings
- Discrete Fourier Transform
- Functional programming
- Input and output
- Indexing routines
- Linear algebra
- Logic functions
- Masked array operations
- Mathematical functions
- Miscellaneous routines
- Polynomials
- Random sampling
- Set routines
- Sorting, searching, and counting
- Statistics
- Test support
- Window functions
- Typing (numpy.typing)
- Packaging
- NumPy C-API
- Array API standard compatibility
- CPU/SIMD optimizations
- Thread Safety
- Global Configuration Options
- NumPy security
- Testing guidelines
- Status of numpy.distutils and migration advice
- numpy.distutils user guide
- NumPy and SWIG
- NumPy reference
- Routines and objects by topic
- Array manipulation routines
- numpy.hstack
Stack arrays in sequence horizontally (column wise).
This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first axis. Rebuilds arrays divided by hsplit.
This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations.
Parameters: tupsequence of ndarraysThe arrays must have the same shape along all but the second axis, except 1-D arrays which can be any length. In the case of a single array_like input, it will be treated as a sequence of arrays; i.e., each element along the zeroth axis is treated as a separate array.
dtypestr or dtypeIf provided, the destination array will have this dtype. Cannot be provided together with out.
New in version 1.24.
casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optionalControls what kind of data casting may occur. Defaults to ‘same_kind’.
New in version 1.24.
Returns: stackedndarrayThe array formed by stacking the given arrays.
See also
concatenateJoin a sequence of arrays along an existing axis.
stackJoin a sequence of arrays along a new axis.
blockAssemble an nd-array from nested lists of blocks.
vstackStack arrays in sequence vertically (row wise).
dstackStack arrays in sequence depth wise (along third axis).
column_stackStack 1-D arrays as columns into a 2-D array.
hsplitSplit an array into multiple sub-arrays horizontally (column-wise).
unstackSplit an array into a tuple of sub-arrays along an axis.
Examples
Try it in your browser! >>> importnumpyasnp >>> a = np.array((1,2,3)) >>> b = np.array((4,5,6)) >>> np.hstack((a,b)) array([1, 2, 3, 4, 5, 6]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[4],[5],[6]]) >>> np.hstack((a,b)) array([[1, 4], [2, 5], [3, 6]]) Go BackOpen In Tab On this page- hstack
Từ khóa » Np.hstack Là Gì
-
Python NumPy Tutorial - Học NumPy Arrays Với Các Ví Dụ - Viblo
-
Hướng Dẫn Np.hstack Là Gì 2022 - Auto Thả Tim Điện Thoại
-
Chi Tiết Bài Học 29. Ma Trận Và Các Phép Toán đại Số Khi Làm Việc Với ...
-
Numpy.hstack() In Python - GeeksforGeeks
-
Np.hstack Là Gì - SHOP ĐỖ THẮNG | Đất Xuyên Việt
-
3.1. Khởi Tạo Một Mảng Trên Numpy — Deep AI KhanhBlog
-
Numpy Vstack So Với Column_stack - HelpEx
-
Xử Lý Dữ Liệu Trên Mảng Cơ Bản Với Numpy - Freetuts
-
Khi Nào Tôi Nên Sử Dụng Hstack / Vstack Vs Append Vs Concatenate Vs ...
-
Python Numpy Tutorial
-
Khi Nào Tôi Nên Sử Dụng Hstack / Vstack Vs Append Vs ... - HelpEx
-
NumPy Ndarray - W3seo Thao Tác Trên Mảng Trong Thư Viện NumPy
-
Tách Mảng (Array Split) Trong Numpy - Lập Trình Từ Đầu
-
Nối Hai Mảng (Array Join) Trong Numpy - Lập Trình Từ Đầu