Numpy.hstack — NumPy V1.23 Manual

Skip to main content Back to top Ctrl+K
  • User Guide
  • API reference
  • Building from source
  • Development
  • Release notes
  • Learn
  • NEPs
Choose version
  • GitHub

Section Navigation

  • NumPy’s module structure
  • Array objects
  • Universal functions (ufunc)
  • Routines and objects by topic
    • Constants
    • Array creation routines
    • Array manipulation routines
      • numpy.copyto
      • numpy.ndim
      • numpy.shape
      • numpy.size
      • numpy.reshape
      • numpy.ravel
      • numpy.ndarray.flat
      • numpy.ndarray.flatten
      • numpy.moveaxis
      • numpy.rollaxis
      • numpy.swapaxes
      • numpy.ndarray.T
      • numpy.transpose
      • numpy.permute_dims
      • numpy.matrix_transpose
      • numpy.atleast_1d
      • numpy.atleast_2d
      • numpy.atleast_3d
      • numpy.broadcast
      • numpy.broadcast_to
      • numpy.broadcast_arrays
      • numpy.expand_dims
      • numpy.squeeze
      • numpy.asarray
      • numpy.asanyarray
      • numpy.asmatrix
      • numpy.asfortranarray
      • numpy.ascontiguousarray
      • numpy.asarray_chkfinite
      • numpy.require
      • numpy.concatenate
      • numpy.concat
      • numpy.stack
      • numpy.block
      • numpy.vstack
      • numpy.hstack
      • numpy.dstack
      • numpy.column_stack
      • numpy.split
      • numpy.array_split
      • numpy.dsplit
      • numpy.hsplit
      • numpy.vsplit
      • numpy.unstack
      • numpy.tile
      • numpy.repeat
      • numpy.delete
      • numpy.insert
      • numpy.append
      • numpy.resize
      • numpy.trim_zeros
      • numpy.unique
      • numpy.pad
      • numpy.flip
      • numpy.fliplr
      • numpy.flipud
      • numpy.roll
      • numpy.rot90
    • Bit-wise operations
    • String functionality
    • Datetime support functions
    • Data type routines
    • Mathematical functions with automatic domain
    • Floating point error handling
    • Exceptions and Warnings
    • Discrete Fourier Transform
    • Functional programming
    • Input and output
    • Indexing routines
    • Linear algebra
    • Logic functions
    • Masked array operations
    • Mathematical functions
    • Miscellaneous routines
    • Polynomials
    • Random sampling
    • Set routines
    • Sorting, searching, and counting
    • Statistics
    • Test support
    • Window functions
  • Typing (numpy.typing)
  • Packaging
  • NumPy C-API
  • Array API standard compatibility
  • CPU/SIMD optimizations
  • Thread Safety
  • Global Configuration Options
  • NumPy security
  • Testing guidelines
  • Status of numpy.distutils and migration advice
  • numpy.distutils user guide
  • NumPy and SWIG
  • NumPy reference
  • Routines and objects by topic
  • Array manipulation routines
  • numpy.hstack
numpy.hstack# numpy.hstack(tup, *, dtype=None, casting='same_kind')[source]#

Stack arrays in sequence horizontally (column wise).

This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first axis. Rebuilds arrays divided by hsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations.

Parameters: tupsequence of ndarrays

The arrays must have the same shape along all but the second axis, except 1-D arrays which can be any length. In the case of a single array_like input, it will be treated as a sequence of arrays; i.e., each element along the zeroth axis is treated as a separate array.

dtypestr or dtype

If provided, the destination array will have this dtype. Cannot be provided together with out.

New in version 1.24.

casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘same_kind’.

New in version 1.24.

Returns: stackedndarray

The array formed by stacking the given arrays.

See also

concatenate

Join a sequence of arrays along an existing axis.

stack

Join a sequence of arrays along a new axis.

block

Assemble an nd-array from nested lists of blocks.

vstack

Stack arrays in sequence vertically (row wise).

dstack

Stack arrays in sequence depth wise (along third axis).

column_stack

Stack 1-D arrays as columns into a 2-D array.

hsplit

Split an array into multiple sub-arrays horizontally (column-wise).

unstack

Split an array into a tuple of sub-arrays along an axis.

Examples

Try it in your browser! >>> importnumpyasnp >>> a = np.array((1,2,3)) >>> b = np.array((4,5,6)) >>> np.hstack((a,b)) array([1, 2, 3, 4, 5, 6]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[4],[5],[6]]) >>> np.hstack((a,b)) array([[1, 4], [2, 5], [3, 6]]) Go BackOpen In Tab On this page
  • hstack

Từ khóa » Np.hstack Là Gì