Oxygen Vacancies Enhance Pseudocapacitive Charge Storage ...

Có thể bạn quan tâm

Clipboard, Search History, and several other advanced features are temporarily unavailable. Skip to main page content Dot gov

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation pubmed logo Search: Search Advanced Clipboard User Guide Save Email Send to
  • Clipboard
  • My Bibliography
  • Collections
  • Citation manager
Display options Display options Format Abstract PubMed PMID

Save citation to file

Format: Summary (text) PubMed PMID Abstract (text) CSV Create file Cancel

Email citation

Email address has not been verified. Go to My NCBI account settings to confirm your email and then refresh this page. To: Subject: Body: Format: Summary Summary (text) Abstract Abstract (text) MeSH and other data Send email Cancel

Add to Collections

  • Create a new collection
  • Add to an existing collection
Name your collection: Name must be less than 100 characters Choose a collection: Unable to load your collection due to an error Please try again Add Cancel

Add to My Bibliography

  • My Bibliography
Unable to load your delegates due to an error Please try again Add Cancel

Your saved search

Name of saved search: Search terms: Test search terms Would you like email updates of new search results? Saved Search Alert Radio Buttons
  • Yes
  • No
Email: (change) Frequency: Monthly Weekly Daily Which day? The first Sunday The first Monday The first Tuesday The first Wednesday The first Thursday The first Friday The first Saturday The first day The first weekday Which day? Sunday Monday Tuesday Wednesday Thursday Friday Saturday Report format: Summary Summary (text) Abstract Abstract (text) PubMed Send at most: 1 item 5 items 10 items 20 items 50 items 100 items 200 items Send even when there aren't any new results Optional text in email: Save Cancel

Create a file for external citation management software

Create file Cancel

Your RSS Feed

Name of RSS Feed: Number of items displayed: 5 10 15 20 50 100 Create RSS Cancel RSS Link Copy

Full text links

Nature Publishing Group full text link Nature Publishing Group Full text links

Actions

CiteCollectionsAdd to Collections
  • Create a new collection
  • Add to an existing collection
Name your collection: Name must be less than 100 characters Choose a collection: Unable to load your collection due to an errorPlease try again Add Cancel PermalinkPermalinkCopyDisplay options Display options Format AbstractPubMedPMID

Page navigation

  • Title & authors
  • Abstract
  • Publication types
  • LinkOut - more resources
Title & authors Abstract Publication types LinkOut - more resources Full text links CiteDisplay options Display options Format AbstractPubMedPMID

Abstract

The short charging times and high power capabilities associated with capacitive energy storage make this approach an attractive alternative to batteries. One limitation of electrochemical capacitors is their low energy density and for this reason, there is widespread interest in pseudocapacitive materials that use Faradaic reactions to store charge. One candidate pseudocapacitive material is orthorhombic MoO3 (α-MoO3), a layered compound with a high theoretical capacity for lithium (279 mA h g-1 or 1,005 C g-1). Here, we report on the properties of reduced α-MoO3-x(R-MoO3-x) and compare it with fully oxidized α-MoO3 (F-MoO3). The introduction of oxygen vacancies leads to a larger interlayer spacing that promotes faster charge storage kinetics and enables the α-MoO3 structure to be retained during the insertion and removal of Li ions. The higher specific capacity of the R-MoO3-x is attributed to the reversible formation of a significant amount of Mo4+ following lithiation. This study underscores the potential importance of incorporating oxygen vacancies into transition metal oxides as a strategy for increasing the charge storage kinetics of redox-active materials.

PubMed Disclaimer

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S. Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search

LinkOut - more resources

  • Full Text Sources

    • Nature Publishing Group
  • Other Literature Sources

    • The Lens - Patent Citations Database
    • scite Smart Citations
Full text links [x] Nature Publishing Group full text link Nature Publishing Group [x] Cite Copy Download .nbib .nbib Format: AMA APA MLA NLM Send To
  • Clipboard
  • Email
  • Save
  • My Bibliography
  • Collections
  • Citation Manager
[x]

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Từ khóa » Hg 16/2017