(PDF) Lower Track Science Students' Argumentation And Open Inquiry ...

Academia.eduAcademia.eduLog InSign Up
  • Log In
  • Sign Up
  • more
    • About
    • Press
    • Papers
    • Terms
    • Privacy
    • Copyright
    • We're Hiring!
    • Help Center
    • less

Outline

keyboard_arrow_downTitleAbstractMethodologyData GatheringData AnalysisResultsReferencesFirst page of “Lower track science students' argumentation and open inquiry instruction”PDF Icondownload

Download Free PDF

Download Free PDFLower track science students' argumentation and open inquiry instructionProfile image of Randy Yerrick, Ph.D.Randy Yerrick, Ph.D.

2000, Journal of Research in Science Teaching

visibility

description

32 pages

descriptionSee full PDFdownloadDownload PDF bookmarkSave to LibraryshareShareclose

Sign up for access to the world's latest research

Sign up for freearrow_forwardcheckGet notified about relevant paperscheckSave papers to use in your researchcheckJoin the discussion with peerscheckTrack your impact

Abstract

The purpose of this study was to examine the effects of open inquiry instruction with low achieving, marginalized high school students. Students with long histories of scholastic failure were asked to participate in question generation, experimental design, and argument construction as a part of their General Science course instruction. Videotapes were collected from daily science instruction, and entrance and exit instruction interviews were conducted using identical open-ended problems. From this dataset, comparisons were made between students' entrance and exit interview responses representing change over time. Shifts in student responses coincided with renegotiated classroom norms for scienti®c discourse. Results are reported for ®ve students in the form of assertions. Students' arguments were observed to shift toward those more consistent with the nature of the scienti®c arguments including: (

... Read more

Related papers

A Thematic Review of Argumentation Studies at The K-8 LevelHasan Bağ

TED EĞİTİM VE BİLİM, 2017

Bu araştırmada, 2006-2016 yılları arasında ilkokul ve ortaokul düzeyindeki argümantasyon çalışmalarının, tematik içerik analizi yöntemiyle incelenmesi amaçlanmıştır. İlköğretim düzeyi ve 2006-2016 tarih aralığı kriterlerine göre, ilgili veri tabanlarından ulaşılan toplam 73 makale ve 9 tez çalışması, tematik içerik analizi yöntemiyle incelenmiştir. Çalışmalar; amaç, yöntem/desen, örneklem düzeyi, veri toplama aracı, veri analiz yöntemi, argümantasyon yapılan konu, argümantasyon kullanım şekli, kullanılan argümantasyon modeli, sonuç ve öneri parametreleri dikkate alınarak incelenmiştir. Bu işlemler sonucunda, yapılan araştırmaların çoğunluğunun argümantasyonun öğrenci başarısına ve derse karşı tutumuna etkisini incelemek amacıyla yürütüldüğü ortaya çıkmıştır. Çalışmalarda yöntem olarak en çok deneysel desenin ve veri toplama aracı olarak da ölçekler ile ses-video kayıtlarının kullanıldığı tespit edilmiştir. Ayrıca, argümantasyon etkinliklerinin çoğunlukla fizik konularında ve ortaokul düzeyinde geliştirildiği belirlenmiştir. Araştırmanın sonucunda, ilkokul düzeyinden itibaren argümantasyon becerilerinin geliştirilmesi için oyunlaştırılmış argümantasyon gibi farklı yöntemlerin kullanılması önerilmektedir.

downloadDownload free PDFView PDFchevron_rightThe Evaluation of “Technological Pedagogical Content Knowledge based Argumentation Practices” Training for Science TeachersErkan Özcan

TED EĞİTİM VE BİLİM, 2016

Fen eğitiminde teknoloji ile desteklenmiş öğrenme ortamları oluşturulmasına, öğrencilerin düşüncelerini ifade ederken bilimsel kuram-kanıt koordinasyonu kurabilme, bilimsel akıl yürütme, eleştirel düşünme, karar verme vb. becerilerinin geliştirilmesine vurgu yapılmaktadır. Bu süreçte öğretme ortamı planlayıcısı ve tasarlayıcısı olarak fen bilimleri öğretmenlerine büyük sorumluluklar düşmektedir. Bu çalışmada, fen bilimleri öğretmenlerinin teknolojik pedagojik alan bilgilerinin(TPAB) argümantasyon uygulamaları yoluyla geliştirilmesini amaçlayan eğitim değerlendirilmiştir. Bu kapsamda; fen bilimleri öğretmenlerinin argümantasyon becerileri, TPAB 'a yönelik özyeterlik algıları ve öğretmenlerin verilen eğitime yönelik görüşleri incelenmiştir. Tek grup ön-test son-test deneysel modele dayanan çalışmaya bir hafta boyunca yaklaşık 54 saat süren eğitim sürecinde Türkiye'nin çeşitli illerinde görev yapmakta olan 37 fen bilimleri öğretmeni katılmıştır. Eğitim sırasında öğretmenlerin TPAB ekseninde fen bilimleri eğitiminde kullanılabilecek argümantasyon uygulamalarını deneyimlemeleri sağlanmıştır. Katılımcıların yer aldığı uygulamalar işbirliğine dayalı grup çalışmaları, drama, modelleme, tematik oyunlar, sanatsal faaliyetler, probleme dayalı öğrenme, arazi gezileri ve gözlem ile atölye çalışmalarını içermektedir. Çalışmada veri toplama aracı olarak ön ve son testlerde Argümantasyon Testi ve TPAB Özyeterlik Ölçeği uygulanmış, çalışma sonunda ayrıca katılımcıların uygulamaya yönelik görüşleri yazılı olarak alınmıştır. Elde edilen veriler ışığında uygulanan eğitimin katılımcıların teknolojik pedagojik alan bilgisi öz-yeterliklerini Teknolojik pedagojik alan bilgisi Argümantasyon Mesleki gelişim Fen bilimleri öğretmenleri

downloadDownload free PDFView PDFchevron_rightPrimary School Students' Views on Scientific KnowledgeNedim Alev

Education Sciences, 2010

The purpose of this study was to examine second stage primary students' views on scientific knowledge in terms of several variables. This study was carried out with 478 (6th, 7th and 8th grade) primary students. To examine students' views on scientific knowledge, a Likert-type scale developed by Coban and Ergin (2008) was used. According to research findings, students' views on scientific knowledge vary regarding to the educational level of parents, parental income, Internet access, academic success, condition of laboratory exercises, participation in private courses. The study revealed that there are many factors affecting students' views on scientific knowledge. It is recommended that parents encourage students' participation in out of school activities through educational institutions, learning environments and laboratories to improve their academic achievement, questioning skills and abilities to make inquiries.

downloadDownload free PDFView PDFchevron_rightStudents’ views on DNR-based instructionInternational Journal of Innovative Research in Education

International Journal of Innovative Research in Education , 2017

The purpose of this study is to determine student' views on DNR-based instruction. A teaching experiment involving patterns and relations, analysis of variation, equations was designed and applied to 9 eighth grade students. The data set consists of students' logs that students evaluate that day and camera records of interviews which every student is asked her/his opinions about the whole teaching experiment. The gathered data were analyzed by content analysis. The NVivo 8 program was used to analyze the data. According to the results of the study, the students' opinions on DNR based instruction were gathered under some categories which were what was studied in the study, how these subject were taught, and which skill was tried to be developed. Briefly, according to the students, DNR-based teaching experiment can be considered as "composing of additive and related subjects, brainstorming on different solutions, for the students to constantly ask themselves questions to understand why such solved questions are so, desiring to solve questions and learn with the excitement of the perceived relationship" Keywords: DNR based instruction, the views of students, teaching experiment.

downloadDownload free PDFView PDFchevron_rightAssessment of Argumentation Models Used in Science Educationhilal aktamis

DergiPark (Istanbul University), 2015

Bu çalışmanın amacı son otuz yılda fen eğitiminde kullanılan argümantasyon modellerini ayrıntılı bir şekilde incelemektir. Modeller fen eğitimindeki kullanım biçimleri, bileşenleri, içerik ve yapısal olarak fen eğitiminde kullanılması bakımından uygunluğu temel alınarak incelenmeye çalışılmıştır. Modeller incelenirken fen eğitimi konu alanına uygun olarak hazırlanmış bir örnek kullanılarak incelenmiştir. İlgili alan bağımsız olan modellerin fen eğitiminde nasıl kullanıldığına dair yapılan araştırma sonuçları göz önünde bulundurularak öncelikle alan bağımlı olmayan ama fen eğitiminde de kullanılan modeller daha sonra direkt olarak alana özgü geliştirilen ve fen eğitiminde kullanılan argümantasyon modelleri incelenerek, bu modellerin fen eğitiminde kullanılmasının sağlayacağı avantaj ve sınırlılıklar tespit edilmiştir. İncelenen tüm modellerin avantaj ve sınırlılıkları ışığında Türkçe dil ve kültür yapısına uygun olarak tasarlanan Türkçe argümantasyon modeli önerilmiştir. Önerilen model ile fen eğitimi alanında argümantasyon konusunda yapılacak olan çalışmalara Türkçeye uygun teorik bir model sağlanması amaçlanmıştır.

downloadDownload free PDFView PDFchevron_rightGains of Physics Teacher Candidates in History of Science Course Conducted by Research and Discussion ApproachesGüner TURAL

2012

History of science is important for students to understand the nature of science (Matthews, 1994). Researchs are also available revealing the significant contribution of history of science to understand the nature of science (Klopfer and Cooley, 1963; Yager and Wick, 1966; Solomon et al., 1992; Roach, 1993; Abd-El-Khalick, 2000; Irwin, 2000; Lonsbury and Ellis, 2002; Malamitsa et al., 2005; Seker and Welsh, 2006). To understand the students how to develop the scientific knowledge, how the historical, philopsical and technological contexts affect this development will ensure more comprehensive look to science. So they will be more willing to learn the science (Justi and Gilbert, 2000). The purpose of this study is to examine gains of physics teacher candidates with their own perspectives about the history of science course and researches in this course. Physics teacher candidates having desired gains in the history of science course will affect positively their students having gains ...

downloadDownload free PDFView PDFchevron_rightThe Effects of Inquiry-Based Learning on Students' Science Achievement and on their Attitude Towards Science and Students' Opinions ABout the Implementation of the Method in the Teaching ProcessYusuf AY

Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 2016

In order to determine the effects of the methods that are compatible with the nature of science in comparison with the methods that have been used traditionally in teaching science, investigating the effects of the inquiry-based learning method on the achievement of the 5 grade students in the science course and their attitudes towards science formed the purpose of this study. In addition, in order to test the usability of the inquiry-based method in teaching science, students‘ opinions about the use of the method were obtained. The research was carried out in the 5th grade * Yrd.Doç.Dr., Mustafa Kemal Üniversitesi, Eğitim Fakültesi, Ġlköğretim Bölümü, Hatay ** ArĢ.Gör., EskiĢehir Osmangazi Üniversitesi, Eğitim Fakültesi, Ġlköğretim Bölümü, EskiĢehir *** Öğretmen, Mustafa Kemal Üniversitesi, Sosyal Bilimler Enstitüsü, Ġlköğretim A.B.D. Hatay Orçun BOZKURT, Yusuf AY, Mehmet FANSA 242 classes of an elementary school in the Antakya county of the province of Hatay. The research was carr...

downloadDownload free PDFView PDFchevron_rightEffect of Implicit Argumentation Education on PSTs' Understandings about NOSCandan Cengiz, PhD

Journal of the Turkish Chemical Society Section C Chemical Education, 2017

Understanding scientific discourse and discussion, supporting and furthering, discourse analysis, talking about science in classes, explanation in science classes are issues that render the individuals become scientifically literate. In such a learning environment individuals involved in conversations where they reason verbally, make arguments containing refutation and supporting. By this means, PSTs can change or improve their inadequate views about NOS even if teaching science based on implicit argumentation does not target teaching elements of NOS. Therefore, the present study aims to investigate the effects of teaching intervention based on implicit argumentation on PSTs’ views about NOS and to analyze the changes on their views with the specifically designed implicit argumentation activities.

downloadDownload free PDFView PDFchevron_rightThe Views of Prospective Science Teachers with Different Cognitive Styles about Laboratory Practices Where Guided Inquiry is ImplementedFeride Şahin, Fatma Ören

The Views of Prospective Science Teachers with Different Cognitive Styles about Laboratory Practices Where Guided Inquiry is Implemented , 2022

This study aimed to determine the views of prospective science teachers with different cognitive styles about laboratory practices that are based on the guided inquiry learning approach. The sample of the study consisted of six prospective science teachers enrolled in a state university. The case study method, which is a qualitative research method, was used in the study. Among case study designs, the embedded single-case design was used, and the views of the participants were determined after a focus group meeting held following the implementation. Content analysis was carried out on the qualitative data of the views of the participants about laboratory practices that were based on the guided inquiry learning approach. As a result of the study, pre-service teachers think that the open-ended nature of the experiments contributes to the development of scientific thinking habits, to see the events from a different perspective, and to the motivation and fun of the experiments. The participants also stated that the use of the hypothetico-deductive reasoning cycle in the experiments contributed to them due to the contextual and structural characteristics of the cycle. It was observed that the participants emphasized the significant contribution of both the open-ended nature of the experiments and the use of the hypothetico-deductive reasoning cycle in the experiments on the process of checking preliminary knowledge before the experiments. In addition to the students' views on guided inquiry learning approach-based laboratory practices in the study, suggestions were presented regarding the use of guided inquiry learning approach-based laboratory practices in terms of field dependent/field independent cognitive styles in line with the relevant literature.

downloadDownload free PDFView PDFchevron_rightPre-service Science Teachers' Knowledge and Views about Several Socio-Scientific Issues after Peer-Led DiscussionsNurhan ÖZTÜRK

Elementary Education Online, 2018

Öz. Bu araştırmanın amacı, akran liderli tartışmalar sonrası öğretmen adaylarının çeşitli sosyo-bilimsel konulara ilişkin gelişimlerini incelemektir. Araştırmanın çalışma grubunu 21 son sınıf fen bilgisi öğretmen adayı oluşturmuştur. Öğretmen adaylarının ilgili sosyo-bilimsel konulara yönelik bilgi ve görüşlerini belirlemek amacıyla oluşturulan soru formları ile uygulamalar boyunca alınan kamera kayıtları ve alan notları veri toplama araçlarını oluşturmuştur. Veriler betimsel analiz ve içerik analizi yöntemi ile analiz edilmiştir. Ayrıca, uygulama öncesi ve sonrası bilgi düzeylerindeki farkı tespit etmek amacıyla Wilcoxon İşaretli Sıralar testi yapılmıştır. Bulgular, öğretmen adaylarının bazı sosyo-bilimsel konularda naif, bazılarında ise daha yeterli bilgi düzeylerinde olduklarını göstermiştir. Akran liderli tartışmalar ise, öğretmen adaylarının bilgi düzeylerinde istatistiksel olarak anlamlı artışla neticelenmiştir. Öğretmen adaylarının görüşlerinin altında yatan gerekçelerde ise sıklıkla, sağlık, din, ekonomi gibi konulara rastlanmış; bu konulara ilişkin bilgi ve görüşlerinin çoğunlukla medya kanalıyla şekillendiği tespit edilmiştir. Bu bağlamda, öğretmen eğitimi programlarına sosyo-bilimsel konuları içeren derslerin dâhil edilmesi ve bunların akran liderli öğretim yöntem ve teknikleri ile pekiştirilmesi önerilebilir. Abstract. The purpose of this study is to examine pre-service science teachers' views about a number of socio-scientific issues after peer-led discussions. The participants were 21 senior pre-service science teachers attending the Department of Science Education at a state university in Turkey. Pre-service science teachers' written responses about their knowledge and views on a number of socio-scientific issues and video recordings and field notes taken during the course of practice were the data sources of the study. The data were analyzed based on descriptive analysis and content analysis methods, and the Wilcoxon Signed Rank test was conducted to determine the difference in knowledge levels before and after discussions. Findings showed that pre-service science teachers held naive understandings in some socio-scientific issues, while they had scientifically acceptable understandings in some others. However, peer-led discussions resulted in a statistically significant increase in the knowledge levels of pre-service science teachers. Reasons underlying the attitudes towards socio-scientific issues were frequently found in the grounds such as health, religion and economy, and the knowledge and approaches related to these topics were mostly shaped by media channels. It is recommended to incorporate socio-scientific issues into teacher education programs and consolidate them with peer-led teaching methods and techniques, like peer-led discussions.

downloadDownload free PDFView PDFchevron_rightSee full PDFdownloadDownload PDFLoading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (62)

  1. American Association for the Advancement of Science. (1989). Science for all Americans: Project 2061. Washington, DC: Author. American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.
  2. Anyon, J. (1981). Social class and school knowledge. Curriculum Inquiry, 11, 3 ± 41. Anyon, J. (1997). Ghetto schooling: A political economy of urban educational reform. New York: Teachers College Press.
  3. Au, K. (1980). Participation structures in a reading lesson with Hawaiian children. Anthropology and Education Quarterly, 11, 91 ± 115. Bakhtin, M. (1981). The dialogic imagination. Austin, TX: University of Texas. Ballenger, C. (1994). Language and literacy in a Haitian pre-school: A perspective from teacher-research, Doctoral dissertation, Boston University. Dissertation Abstracts International, 54, 842A.
  4. Bourdieu, P., & Passeron, J.C. (1977). Reproduction in education, society and culture. Beverly Hills, CA: Sage.
  5. Brenner, M. (1981). Social method and social life. New York: Academic Press.
  6. Britton, J. (1990). Talking to learn. In D. Barnes, J. Britton, & M. Torbe (Eds.), Language, the learner, and the school (pp. 89 ± 130). Portsmouth, NH: Heinemann.
  7. Carlsen, W.S. (1991). Questioning in classrooms: A sociolinguistic perspective. Review of Educational Research, 61, 157 ± 178.
  8. Carlsen, W.S. (1993). Teacher knowledge and discourse control: Quantitative evidence from novice biology teachers' classrooms. Journal of Research in Science Teaching, 30, 471 ± 481. Carr, W., & Kemmis, S. (1986). Becoming critical: Education, knowledge, and action research. Geelong, Australia: Deakin University. Cazden, C.B. (1988). Classroom discourse: The language of teaching and learning. Portsmouth, NH: Heinemann.
  9. Champagne, A., & Klopfer, L. (1977). A sixty-year perspective on three issues in science education: I. Whose ideas are dominant? II. Representation of women. III. Re¯ective thinking and problem solving. Science Education, 61, 431 ± 452.
  10. Cobb, P., Wood, T., & Yackel, E. (1991). Analogies from philosophy and sociology of science for understanding classroom life. Science Education, 75, 23 ± 45. Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of development research. Educational Psychologist, 31, 175 ± 190. Cochran-Smith, M. & Lytle, S.L. (1993). Inside/outside: Teacher research and knowledge. New York: Teachers College Press.
  11. Connell, R.W. (1993). Schools and social justice. Philadelphia, PA: Temple University Press. Coulthard, M. (1985). An introduction to discourse analysis (2nd ed.). New York: Longman.
  12. DeBoer, G. (1991). History of ideas in science education: Implications for practice. New York: Teachers College Press.
  13. Delpit, L. (1988). The silenced dialogue: Power and pedagogy in educating other people's children. Harvard Educational Review, 58, 280 ± 298.
  14. Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scienti®c knowledge in the classroom. Educational Researcher, 23(7), 5 ± 12. Duschl, R.A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.
  15. Duschl, R.A. (1994). Research on the history and philosophy of science. In D. L. Gabel (Ed.), Handbook of research in science teaching and learning (pp. 443 ± 465). New York: Macmillan.
  16. Duschl, R.A., & Gitomer, D. (1991). Epistemological perspectives on conceptual change: Implications for educational practice. Journal of Research in Science Teaching, 28, 839 ± 858. Duschl, R.A., & Hamilton, R.J. (1998). Conceptual change in science and in the learning of science. In B. J. Fraser and K. G. Tobin (Eds.) International handbook of science education (pp. 1047 ± 1065). Dordrecht, The Netherlands: Kluwer.
  17. Eckert, P. (1989). Jocks and burnouts: Social categories and identity in the high school. New York: Teachers College Press.
  18. Eichinger, D., Anderson, C.W., Palincsar, A.S., & David, Y. (1991, April). An illustration of the roles of content knowledge, scienti®c argument, and social norms in collaborative problem solving. Paper presented at the annual meeting of the American Educational Research Association, Chicago.
  19. Erickson, F. (1973). Gatekeeping and the melting pot: Interaction in counseling encounters. Harvard Educational Review, 45, 44 ± 70. Erlandson, D., Harris, E., Skipper, B., & Allen, S. (1993). Doing naturalistic inquiry: A guide to methods. Newbury Park, CA: Sage.
  20. Fine, M. (1991). Framing dropouts: Notes on the politics of an urban public high school. Albany, NY: State University of New York Press.
  21. Fleck, L. (1979). Genesis and development of scienti®c fact. Chicago: University of Chicago Press.
  22. Florio-ruane, S. (1987). Sociolinguistics for educational researchers. American Educational Research Journal, 24, 185 ± 197. Gallas, K. (1994). The languages of learning: How children talk, write, dance, draw, and sing their way into understanding the world. New York: Teachers College Press. Gallas, K. (1995). Talking their way into science: Hearing children's questions and theories, responding with curricula. New York: Teachers College Press.
  23. Gamaron, A. (1987). The strati®cation of high school learning opportunities. Sociology of Education, 60, 135 ± 155.
  24. Gee, J. (1989). What is literacy? Journal of Education, 171, 18 ± 25.
  25. Gee, J. (1994, April). Science talk: How do you start to do what you don't yet know how to do? Paper presented at the annual meeting of American Educational Research Association, New Orleans, LA.
  26. Giroux, H. (1988). Schooling and the struggle for public life. Minneapolis, MN: University of Minneapolis Press.
  27. Giroux, H. (1996). Living dangerously: Multiculturalism and the politics of difference. New York: Peter Lang.
  28. Glaser, B.G., & Strauss, A.L. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine. Harre, R. (1961). Theories and things. London: Newman.
  29. Hatano, G. (1993). Time to merge Vygotskian and constructivist conceptions of knowledge acquisition. In E. Forman, N. Minick, & C.A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children's development (pp. 153 ± 166). New York: Oxford University Press.
  30. Hawkins, J.D., & Weis, J.G. (1985). The social development model: An integrated approach to delinquency prevention. Journal of Primary Prevention, 6, 73 ± 97. Heath, S.B. (1983). Ways with words: Language, life, and work in communities and classrooms. New York: Cambridge University Press.
  31. Heath, S.B. (1986). Sociocultural contexts of language development. Los Angeles: Evaluation, Dissemination and Assessment Center, California State University. Hildebrand, G.M. (1998). Disrupting hegemonic writing practices in school science: Contesting the right way to write. Journal of Research in Science Teaching, 35, 345 ± 362. Hogan, K., Pressley, M., Nastasi, B. (1996, April). Discourse patterns and scaffolding strategies that promote and inhibit student thinking during collaborative scienti®c inquiry. Paper presented at the annual meeting of the American Educational Research Association, New York. Hopkins, R. (1997). Educating Black males: Critical lessons in schooling, community, and power. Albany, NY: State University of New York Press.
  32. Hull, D. (1988). Science as a process. Chicago: University of Chicago Press.
  33. Kemmis, S., & McTaggert, R. (1988). The action research planner (3rd ed.). Geelong, Australia: Deakin University. Kreisberg, S. (1992). Transforming power: Domination, empowerment, and education. Albany, NY: State University of New York Press.
  34. Kuhn, D. (1993). Science as argument: Implications for teaching and learning scienti®c thinking. Science Education, 77, 319 ± 337.
  35. Kuhn, T. S. (1962). The structure of scienti®c revolutions (2nd ed.). Chicago: University of Chicago Press.
  36. Latour, B., & Woolgar, S. (1986). Laboratory life. Princeton, NJ: Princeton University Press. Lave, J. (1990). Views of the classroom: Implications for math and science learning research. In M. Gardner, J.G. Greeno, F. Reif, A.H. Schonfeld, A.A. DiSessa, & E. Stage (Eds.), Toward a scienti®c practice of science education (pp. 251 ± 263). Hillsdale, NJ: Lawrence Erlbaum. Lemke, J. (1990). Talking science: Content, con¯ict, and semantics. New York: Ablex.
  37. Lewis, M. (1993). The culture of inequality. Amherst, MA: University of Massachusetts Press. Lincoln, Y.S., & Guba, E.G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
  38. Lytle, S., & Cochran-Smith, M. (1992). Research as a way of knowing. Harvard Educational Review, 62, 447 ± 474. Matthews, M. (1994). Science teaching: The role of history and philosophy of science. London: Routledge.
  39. Mayr, E. (1982). The growth of biological thought. Cambridge, MA: Belknap Press.
  40. McLaren, P. (1994). Life in schools: An introduction to critial pedagogy in the foundations of education. White Plains, NY: Longman.
  41. McNeil, L.M. (1986). Contradictions of control: School structure and school knowledge. London: Routledge and Kegan Paul.
  42. Mehan, H., Villanueva, I., Hubbard, L., & Lintz, A. (1996). Constructing school success: The consequences of untracking low-achieving students. New York: Cambridge University Press. Michaels, S. (1990). This dismantling of narrative. In A. McCabe & C. Peterson (Eds.), Developing narrative structure (pp. 303 ± 351). Hillside, NJ: Erlbaum. Michaels, S., & O'Connor, M.C. (1990, July). Literacy as reasoning within multiple discourses: Implications for policy and educational reform. Paper presented at The Council of Chief State School Of®cers 1990 Summer Institute, Boston, MA. Michigan State Board of Education. (1991). Michigan goals and objectives: New directions for science education in Michigan. Lansing, MI: Michigan Center for Career and Technical Education.
  43. Mishler, E. (1986). Research interviewing: Context and narrative. Cambridge, MA: Harvard University Press. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
  44. Newmann, F. (1992). Student engagement and achievement in American secondary schools. New York: Teachers College Press.
  45. Oakes, J. (1985). Keeping track: How schools structure inequality. New Haven, CT: Yale University Press.
  46. Oakes, J. (1990). Multiplying inequalities: The effects of race, social class, and tracking on opportunities to learn mathematics and science. Santa Monica, CA: Rand Corporation. Oakes, J., & Guiton, G. (1995). Matchmaking: The dynamics of high school tracking decisions. American Educational Research Journal, 32, 3 ± 33. O'Connor, M.C., & Michaels, S. (1993). Aligning academic task and participation status through revoicing: Analysis of a classroom discourse strategy. Anthropology and Education Quarterly, 24, 318 ± 335.
  47. Ogbu, J. (1978). Minority education and caste: The American system in cross-cultural perspective. New York: Academic Press.
  48. O'Loughlin, M. (1992). Rethinking science education: Beyond Piagetian constructivism toward a sociocultural model of teaching and learning. Journal of Research in Science Teaching, 29, 791 ± 820. Page, R.N. (1991). Lower track classrooms: A curricular and cultural perspective. New York: Teachers College Press.
  49. Poole, D. (1994). Routine testing practices and the linguistic construction of knowledge. Cognition and Instruction, 12, 125 ± 150.
  50. Popper, K.R. (1968). Conjectures and refutations: The growth of scienti®c knowledge (Vols.
  51. ± 9). London: Routledge and Kegan Paul.
  52. Rodriguez, A. (1997). The dangerous discourse of invisibility: A critique of the National Research Council's national science education standards. Journal of Research in Science Teaching, 34, 19 ± 37.
  53. Rosebery, A., Warren, B., & Conant, F. (1992). Appropriating scienti®c discourse: Findings from language minority classrooms. Journal of the Learning Sciences, 2, 61 ± 94. Rosenbaum, J. (1976). Making inequality: The hidden curriculum of high school tracking. New York: John Wiley and Sons.
  54. Roth, W.-M. (1994). Experimenting in a constructivist high school physics laboratory. Journal of Research in Science Teaching, 31, 197 ± 223.
  55. Roth, W.-M. (1995). Inventors, copycats, and everyone else: The emergence of shared (arti) facts and concepts as de®ning aspects of classroom communities. Science Education, 79, 475 ± 502. Roth, W.-M. (1996). Teacher questioning in an open-inquiry learning environment: Interactions of context, content, and student responses. Journal of Research in Science Teaching, 33, 709 ± 736. Roth, W.-M. (1997). Interactional structures during a grade 4-5 open-design engineering unit. Journal of Research in Science Teaching, 34, 273 ± 302. Roth, W.-M., & Bowen, G.M. (1995). Knowing and interacting: A case of culture, practices, and resources in a Grade 8 open-inquiry science classroom guided by a cognitive apprenticeship metaphor. Cognition and Instruction, 13, 73 ± 128. Roth, W.-M., & Lucas, K.B. (1997). From ``truth'' to ``invented reality'': A discourse analysis of high school physics students' talk about scienti®c knowledge. Journal of Research in Science Teaching, 34, 145 ± 179. Roychoudhury, A., & Roth, W.-M. (1996). Interactional processes in a constructivist physics lab. International Journal of Science Education, 18, 423 ± 445. Russell, T. (1983). Analyzing arguments in science classroom discourse: Can teachers' questions distort scienti®c authority? Journal of Research in Science Teaching, 20, 27 ± 45. Solomon, J. (1989). The social construction of school science. In R. Millar (Ed.), Doing science: Images of science education (pp. 126 ± 136). Philadelphia: Falmer Press. Steele, C.M. (1992). Race and the schooling of Black Americans. The Atlantic Monthly, 269, 68 ± 78.
  56. Tobias, S. (1990). They're not dumb, they're different: Stalking the second tier (Occasional paper). Tucson, AZ: Research Corporation. (ERIC Document Reproduction Service No. ED 331 702)
  57. Tobin, K., & Gallagher, J.J. (1987). What happens in high school science classrooms? Journal of Curriculum Studies, 19, 549 ± 560. Toulmin, S. (1958). The uses of arguments. New York: Cambridge University Press.
  58. Traweek, S. (1988). Beamtimes and lifetimes: The world of high energy physicists. Cambridge, MA: Harvard University Press.
  59. Warren, B., Rosebery, A., & Conant, F. (1989). Cheche Konnen: Science and literacy in language minority classrooms (BBN Technical Report No. 7305). Cambridge, MA: Bolt, Beranek, and Newman. (ERIC Document Reproduction Service No. ED 326 060)
  60. Welch, W., Klopfer, L., Aikenhead, G., & Robinson, J. (1981). The role of inquiry in science education: Analysis and recommendations. Science Education, 65, 33 ± 50.
  61. Willis, P. (1977). Learning to labor: How working class kids get working class jobs. New York: Columbia University Press.
  62. Yerrick, R. (1998). Reconstructing classroom facts: Transforming lower track science classrooms into communities of inquiry. Journal of Science Teacher Education, 9, 241 ± 270. Yerrick, R. (1999). Re-negotiating the discourse of lower track high school students. Research in Science Education, 29, 269 ± 293.
View morearrow_downward

Related papers

To investigate the effect of argument-driven inquiry on pre-service science teachers' laboratory instructionTuba Demircioglu

2011

TEZ8915Tez (Yüksek Lisans) -- Çukurova Üniversitesi, Adana, 2011.Kaynakça (s. 89-97) var.xviii, 153 s. : res. ; 29 cm.The purpose of this study is to examine the effect of Argument-Driven Inquiry (ADI) laboratory activities to pre-service elementary science teachers' academic achievement, argumentativeness, science process skills and argumentation level. The research was conducted with 79 pre-service elementary science teachers at Cukurova University in the fall semester of 2010-2011 academic year. The students in the control group (n=38) participated in eight different traditional laboratory activities. In this instruction, students followed a step by step procedure and produced a traditional lab report with collaborative groups. The students in the experimental group (n=41) participated in eight different Argument-Driven Inquiry (ADI) laboratory activities. In these activities, students designed their own experiments, developed of an argument on a ""whiteboard"&...

downloadDownload free PDFView PDFchevron_rightEffects of Argumentation Based Inquiry Approach on Disadvantaged Students\' Science AchivementMurat Gunel

2013

Purpose of this study was to explore the effects of using the Argumentation Based Inquiry (ABI) approach (adopted from the Science Writing Heuristic - SWH approach) on students’ learning chemistry subjects in the primary school. Quasi-experimental, pre-posttest design was applied. The study involved two 8 th grade classes of one teacher from a primary school in a disadvantaged social economic area of Erzurum. While one of the randomly selected section, the treatment group, engaged in argumentation based inquiry activities by using the ABI approach and students wrote activity report for each activity individually, the other section, the control group, instructed with usual approach used by the instructor in the previous semesters. The study was implemented in the properties and structures of matter unit. As data collection tools, chemistry subject based tests (9 multiple choice questions and 4 open-ended questions) were developed and used as pre and post assessments. The pre-posttest...

downloadDownload free PDFView PDFchevron_rightOpinions of Classroom Teachers about the Use of Argumentation Method in Science Classroom in Primary Schoolmehmet ali kandemir

Journal of Computer and Education Research, 2018

The purpose of this study is to determine the opinions of classroom teachers in the elementary school about the use of the argumentation method appropriate to the Toulmin argumentation model in the science class. This study was carried out in 16 hours (8 days) with participation of 37 class teachers in Balıkesir province of Bandırma. This study is based on the case study of the qualitative research design. The data was the result of video recording of semi-structured interviews and semistructured interviews with six classroom teachers. The obtained data was analyzed according to the content analysis which is one of the analysis methods. At the end of this training, their experiences are expressed as opinions. According to these views, the method of argumentation; the students will be interested and attentive, the students will have a positive attitude towards the classes, the students will be actively involved in the lessons and learn meaningfully, the ability to develop scientific thinking skills and to understand the nature of science can be used not only in science class but also in other courses.

downloadDownload free PDFView PDFchevron_rightDeveloping Pre-Service Chemistry Teachers' Understandings of Teaching through ArgumentationFitnat köseoğlu

Journal of Turkish Science Education, 2011

Birçok fen eğitimcisi hem öğrenilmesi gereken bir bilimsel düĢünme becerisi hem de etkin bir öğretim yöntemi olarak argümantasyonun önemini vurgulamaktadır. Fakat yapılan çalıĢmalar fen eğitiminde argümantasyon uygulamalarının yetersiz olduğunu ortaya koymuĢ ve öğretmen eğitiminin gerekliliğine dikkat çekmiĢtir. Bu nitel durum çalıĢmasında açık-düĢündürücü öğretim yaklaĢımı kullanarak geliĢtirdiğimiz argümantasyon odaklı kimya öğretimi dersini alan kimya öğretmen adaylarının argümantasyonla öğretim hakkında hangi anlayıĢları geliĢtirdikleri incelendi. ÇalıĢmaya 23 kimya öğretmen adayı katıldı. Derste, öğretmen adayları bilimde ve kimya eğitiminde argümantasyona odaklanan etkinliklere öğrenci olarak aktif bir Ģekilde katıldılar ve deneyimleri üzerinde düĢünerek argümantasyonla kimya öğretimi hakkında çıkarımlarda bulundular. Nitel verilerin analizi dersten sonra öğretmen adaylarının argümantasyonla kimya öğretimi hakkında olumlu anlayıĢlar geliĢtirdiklerini gösterdi. Öğretmen adayları argümantasyonla kimya öğretiminin bilimsel düĢünme ve sorgulama becerisi kazandıracağını, kavramsal değiĢimi ve anlamlı öğrenmeyi destekleyeceğini, bilimin doğası ile ilgili anlayıĢları geliĢtireceğini, derse karĢı ilgiyi artıracağını ve öğrencilerin öğrenme sürecine aktif katılımını destekleyeceğini ifade etmiĢlerdir.

downloadDownload free PDFView PDFchevron_rightThe argumentation levels of social studies undergraduate and graduate students regarding socio-scientific issuescanan tunç

Milli Eğitim Dergisi

Sosyal bilgiler lisans ve lisansüstü öğrencilerin sosyo bilimsel konulara yönelik argümantasyon düzeylerinin belirlenmesi amacıyla yapılan araştırma, nitel araştırma yaklaşımlarından durum çalışması olarak desenlemiştir. 2020-2021 bahar döneminde Batı Karadeniz bölgesinde bir üniversitede sosyal bilgiler eğitiminden 2. Sınıf, 4. Sınıf ve lisansütü sınıfından 4’er kişi olmak üzere toplam 12 kişi ile yürütülmüştür. Katılımcıların seçiminde amaçlı örnekleme yöntemlerinden kolay ulaşılabilir örnekleme yöntemi kullanılmıştır. Araştırmada veri toplama aracı olarak argümantasyon bileşenlerinin yer aldığı açık uçlu sorulardan meydana gelen çalışma kâğıdı kullanılmıştır. Araştırma sonucunda sosyal bilgiler eğitimi lisans ve lisans üstü öğrencilerinin ilk uygulamalardan son uygulamalara doğru argüman düzeylerinde olumlu yönde değişimler görülmüştür. Araştırmanın diğer bir sonucu olarak öğrencilerin argüman bileşenlerini oluştururken zorlandığı kısımlar tespit edilmiştir. Katılımcıların argüma...

downloadDownload free PDFView PDFchevron_rightThe Effect of Interactive Whiteboard Supported Inquiry-Based Learning on Achievement and Motivation in Physics and Views of Prospective Teachers Toward the InstructionUgur Sari

Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 2013

In this study, the effects of interactive whiteboard supported inquiry-based learning approach on the academic achievement and motivation in modern physics teaching have been investigated and the views of prospective teachers toward the teaching supported by interactive whiteboard have been defined. In this study, patterned in the form of quasi-empirical model and supported with pre-and post-test control groups, data were collected by academic achievement tests, motivation scales and semi-structured interview forms. While traditional method was used to deliver lectures to the control group, interactive white board was used to deliver experimental group lectures enriched with activities such as simulations, videos and animations. Thus, it has been taken advantages of technology support in the processes of orienting and asking questions, identification of problems, hypothesis generation, testing and planning. In addition to these, the processes of measuring, drawing a graphs, controlling the variables and data interpretation have also been supported by simulations in lectures. As a result of applications, it has been achieved that the teaching materials used in experimental group significantly increased the students' motivations and academic achievements. Moreover, it also has been obtained that prospective teachers had positive opinions; such as funny (amusing) lecture environment, increasing the participation, concretization of the abstract concepts, facilitating the learning and providing permanence on applications in this study.

downloadDownload free PDFView PDFchevron_rightInvestigation of Problem Statement Developed by Science Teachers to Perform STEM Focused Activities in Their CoursesYasemin Hacıoğlu

Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 2018

Bu araştırmada fen derslerinde STEM entegrasyonu gerçekleştirmek üzere 15 Fen bilimleri öğretmenine 30 saatlik eğitim verilmiş ve eğitim sonunda STEM eğitim anlayışına yönelik bu programa katılmış fen bilimleri öğretmenlerinin ortaya koydukları problem durumlarının incelenmesi amaçlanmıştır. Araştırmanın modeli bütüncül tek durum çalışmasıdır. Araştırmanın çalışma grubunu 15 fen bilimleri öğretmeni oluşturmaktadır. Eğitim sonunda katılımcılardan fen bilimleri dersini STEM odaklı etkinlik kapsamında planlamak üzere programdan kendilerinin seçecekleri kazanımlar ile ilgili bireysel olarak problem durumları oluşturması istenmiştir. Öğretmenlerin oluşturdukları problem durumlarına yönelik dokümanlar ve öğretmenler problem durumlarını oluştururken araştırmacılar tarafından tutulan alan notları araştırmanın veri kaynağıdır. Dokümanlar betimsel analiz, alan notları ise içerik analizi ve betimsel analiz teknikleri ile analiz edilmiştir. Öğretmenlerin çoğunlukla problem dayalı öğrenme ekseni...

downloadDownload free PDFView PDFchevron_rightkeyboard_arrow_downView more papers Academia
  • Explore
  • Papers
  • Topics
  • Features
  • Mentions
  • Analytics
  • PDF Packages
  • Advanced Search
  • Search Alerts
  • Journals
  • Academia.edu Journals
  • My submissions
  • Reviewer Hub
  • Why publish with us
  • Testimonials
  • Company
  • About
  • Careers
  • Press
  • Help Center
  • Terms
  • Privacy
  • Copyright
  • Content Policy
Academia580 California St., Suite 400San Francisco, CA, 94104© 2026 Academia. All rights reserved

Từ khóa » Hh Hh Hh. Hb Hb. Hbb H B H Yh Hy Y. H G