(PDF) Model Of A Passively Q-switched Laser Accounting Nonlinear ...
Có thể bạn quan tâm
- Log In
- Sign Up
- more
- About
- Press
- Papers
- Terms
- Privacy
- Copyright
- We're Hiring!
- Help Center
- less
Outline
keyboard_arrow_downTitleAbstractKey TakeawaysExperimental ProcedureFinite Difference Time Domain MethodEssential Background TheoryTheoretical AnalysisNumerical Results and DiscussionExperimentalExperimental Set-UpBackgroundResults and ConclusionsExperimental ResultsResultsConclusionsConclusionSummaryIntroductionReferencesFAQsDownload Free PDF
Download Free PDFModel of a passively Q-switched laser accounting nonlinear absorption anisotropy in a passive switch
Alexander Kir'yanov1998
visibility…
description473 pages
descriptionSee full PDFdownloadDownload PDF deployed_code_updateFull PDF Package more_vert more_vert closeSign up for access to the world's latest research
Sign up for freearrow_forwardcheckGet notified about relevant paperscheckSave papers to use in your researchcheckJoin the discussion with peerscheckTrack your impactAbstract
Abstract Interest to the passive Q-switching mode in lasers does not fade on decades. Manufacturing in the last time of new passive Q-switches (PS) of crystalline type allows one to realize this regime for lasers of the broad spectral range. This, in turn, demands to perfect the model describing this mode of oscillation. In particular, general formulas for output energy and giant pulse duration are recently generalized for the case of excited state (ES) absorption in PS with phototropic centers (PC).
... Read moreKey takeaways
AI
- The model for passive Q-switching in lasers is refined to include PC orientation and spot size ratios.
- Experimental verification shows good agreement with theoretical predictions for Nd:YAG lasers using crystalline passive switches.
- Soliton dynamics in nonlinear optical materials exhibit complex interactions influenced by spatial refractive index profiles.
- Nonlinear optical properties can be enhanced by designing monolithic chromophores with optimized donor-acceptor strengths.
- Induced nonlinearity in semiconductor lasers can lead to chaotic dynamics and novel optical behaviors.
Related papers
Modeling pulse shape of Q-switched lasersJingang LiuIEEE Journal of Quantum Electronics, 2001
A general approach describing the pulse shape and temporal width of Q-switched lasers has been derived. Based on a normalized intermediate variable describing the ratio of population inversion density at the beginning of Q-switch to that at threshold, a generalized characteristic equation that governs passively and actively Q-switched lasers is derived. From the characteristic equation, the pulse symmetry property and pulse width can be described and easily calculated for any given operating parameters, and the waveform of the laser pulse can be reconstructed without solving the laser rate equations. An approach is also given for the case of intracavity frequency-doubled Q-switched lasers. Theoretical results show agreement with experiments for a diode pumped Nd : YAG laser system that is passively Q-switched by a Cr 4+ : YAG absorber.
downloadDownload free PDFView PDFchevron_rightNumerical Simulation of Passively Q-Switched Solid State LasersInTech eBooks, 2012
Short laser light pulses have a large number of applications in many civilian and military applications [1-10]. To a large percentage these short laser pulses are generated by solid state lasers using various active media types (crystals, glasses or ceramic) operated in Qswitching and/or mode-locking techniques [1-10]. Among the short light pulses laser generators, those operated in Q-switching regime and emitting pulses of nanosecond FWHM duration occupy a large part of civilian (material processing for example: nanomaterials formation by using ablation technique [3,7]) and military (projectile guidance over long distances and range finding) applications. Basically, Q-switching operation relies on a fast switching of laser resonator quality factor Q from a low value (corresponding to large optical losses) to a high one (representing low radiation losses). Depending on the proposed application, two main Q-switching techniques are used: active, based on electrical (in some cases operation with high voltages up to about 1 kV being necessary) or mechanical (spinning speeds up to about 1 kHz being used) actions on an optical component at least, coming from the outside of the laser resonator, and passive relying entirely on internal to the laser resonator induced variation of one optical component transmittance.
downloadDownload free PDFView PDFchevron_rightAntiphase Q-switch dynamics in a multimode solid-state laser with saturable absorberOscar MartinezOptics Communications, 1999
Antiphase Q-switch dynamics in a multimode solid-state laser with saturable absorber is investigated both experimentally and theoretically. The system under study is a large cavity, longitudinally pumped Nd:YAG laser with Cr 4q :YAG as saturable absorber. Asymmetric two-mode operation was found for a wide range of control parameters. To describe the sparse mode distribution, a multimode rate equation system was developed that accounts for spatial grating in the active medium and non-linear absorption. The model is shown to predict pulse sequences experimentally observed as the pump parameter is changed. For high pump ratios a quasi-pure periodic antiphase state is recovered which consists of two modes pulsing with the same period T and shifted by Tr2. It is then conjectured that an apparent symmetry of the system can be established for certain values of the control parameters.
downloadDownload free PDFView PDFchevron_rightPulse energy dynamics of passively mode-locked solid-state lasers above the Q-switching thresholdSimon zellerAdvanced Solid-State Photonics, 2004
We have investigated the dynamical behavior of various passively mode-locked solid-state lasers by measuring how a modulation of the pump power affects the output power. We show theoretically and experimentally how the damping of the relaxation oscillations is reduced and finally becomes zero when the pump power is reduced so that the threshold for Q-switched mode locking is approached. For the first time to our knowledge, this method provides important information on the stability of mode locking above the Q-switched mode-locking threshold. It is applicable to lasers that are mode locked with slow-saturable absorbers. The results helped to explain the cause of unexpectedly low Q-switching thresholds in two cases. Also we obtain some useful spectroscopic information.
downloadDownload free PDFView PDFchevron_rightInfluence of Absorption cross section of saturable absorber on Passive Q-switching laser pulse characteristicsAbdul-Kareem salihMağallaẗ al-ʿulūm Ḏī Qār, 2014
The absorption cross section of saturable absorber influence on passive Q-switching laser pulse behavior has been studied by numerical solution of rate equations mathematical model. We report the passive Q-switching of the 4 2 4 : O BeAl Cr (alexandrite) laser with the yttrium silicate 5 2 4 : SiO Y Cr ) : ( YSO Cr solid state saturable absorber. The study shows that the behavior pulse energy, initial value of population inversion, and the laser photon number is scaling up when the ground state absorption cross section of saturable absorber increasing, while the behavior of pulse duration is scaling down.
downloadDownload free PDFView PDFchevron_rightAbsorption Activity Investigation of Saturable Absorber for Dual Wavelengths in Laser Passive Q-Switching SystemAbdul-Kareem salihIndian journal of science and technology, 2024
The absorption activity of saturable absorber material (Cr +4 : YAG) for dual wavelengths (1.064 µm and 0.946 µm), simultaneously generated in same passive Q-switching system, has been investigated. Methods: This study utilized the mathematical model that was used in our previous study. Rung-Kutta-Fehelberge numerical method has been used to solve this mathematical model. Nd +3 : YAG used as an effective medium and Cr +4 : YAG used as a saturable absorber in the laser passive Q-switching optical system. Finding: When the population density of saturable absorber (n i ) increases, the steady state of photons losses occurs at advancement time and the absorption activity reaches to optical bleaching state at advancement time also (it is occurring approximately at time 35 ns from the beginning of the time of pulse construction when the n i = 4 × 10 18 cm -3 , while at n i = 3 × 10 18 cm -3 , approximately at time 47 ns). Novelty: The absorption activity of saturable absorber material for a single wavelength of photons oscillating inside the passive Q-switch laser system received attention by some studies. This study verifies or investigates from the behavior of absorption activity of saturable absorber material when encounters photons with two wavelengths oscillating simultaneously inside the laser cavity in order to obtain high power of the pulses.
downloadDownload free PDFView PDFchevron_rightOn the possibility of a new passively Q-switched laser operation mode with periodic wavelength switchingMaxim DoroshenkoQuantum Electronics, 2015
On the possibility of a new passively Q-switched laser operation mode with periodic wavelength switching View the table of contents for this issue, or go to the journal homepage for more 2015 Quantum Electron. 45 515
downloadDownload free PDFView PDFchevron_rightAnalysis of a large-mode neodymium laser passively Q switched with a saturable absorber and a stimulated-Brillouin-scattering mirrorVicente ABOITES, FInstPJournal of the Optical Society of America B, 2000
A neodymium laser passively Q switched with a saturable absorber and a stimulated-Brillouin-scattering mirror is numerically studied. An explanation is given for the laser beam spot-size widening. It is shown that this phenomenon is, most probably, due to nonperfect phase conjugation that occurs during the stimulated-Brillouin-scattering process through switching by intracavity radiation. The results of numerical simulation of the laser that account for this phenomenon are compared with experiment. It is demonstrated that the calculated output energy and pulse duration are in good agreement with those measured experimentally.
downloadDownload free PDFView PDFchevron_rightAnalysis of Passively Q-Switched Lasers With Simultaneous ModelockingSteve HillSimultaneous Q-switching and modelocking in a diode-pumped Nd : YAG/Cr 4+ : YAG laser is experimentally demonstrated. A general recurrence is derived for the analysis of the temporal shape of a single Q-switched envelope with modelocked pulse trains. With the developed model, the modelocked pulse energy and the total Q-switched pulse energy can be calculated. Excellent agreement was found between the present results and detailed theoretical computations. Index Terms-Mode locking, passively -switched laser, saturable absorber, solid-state laser.
downloadDownload free PDFView PDFchevron_rightIsolas of periodic passive Q-switching self-pulsations in the three-level:two-level model for a laser with a saturable absorbercarlos pandoPhysical Review E, 2011
We show that a fundamental feature of the three-level:two-level model, used to describe molecular monomode lasers with a saturable absorber, is the existence of isolas of periodic passive Q-switching (PQS) self-pulsations. A common feature of these closed families of periodic solutions is that they contain regions of stability of the PQS self-pulsation bordered by period-doubling and fold bifurcations, when the control parameter is either the incoherent external pump or the cavity frequency detuning. These findings unveil the fundamental solution structure that is at the origin of the phenomenon known as "period-adding cascades" in our system. Using numerical continuation techniques we determine these isolas systematically, as well as the changes they undergo as secondary parameters are varied.
downloadDownload free PDFView PDFchevron_rightSee full PDFdownloadDownload PDF
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (760)
- R Y Chiao, I. H. Deutsch, J. C. Garrison, and E. W. Wright, Solitons in quantum non- 1 J linear optics in Frontiers in Nonlinear Optics: the Serge AkhmanovMemonal Volume edfted by H. Walther, N. Koroteev, and M. 0. Scully (Institute of Physics Publishing, Bristol and Philadelphia, 1993), p. 151.
- P.L. Ramazza, E. Pampaloni, S. Residori and F.T. Arecchi, Physica D 96, 259 (1996)
- F.T. Arecchi, A.V. Larichev and M.A. Vorontsov, Opt. Comm., 105, 297 (1994), E. Pampaloni, P.L. Ramazza, S. Residori and F.T. Arecchi, Phys. Rev. Lett., 74, 258 (1995)
- S. Residori, P.L.Ramazza, E. Pampaloni, S. Boccaletti and F.T. Arecchi, Phys. Rev. Lett, 76, 1063(1996).
- E. Pampaloni, S. Residori, S. Soria and F.T. Arecchi, Phys. Rev. Lett., 78, 1042 (1997).
- S. Boccaletti, J. Bragard, P.L. Ramazza and F.T. Arecchi, to be published.
- F.T. Arecchi, G. Giacomelli, P.L. Ramazza and S. Residori, Phys. Rev. Lett., 65, 2531 (1990);
- F.T. Arecchi, S. Boccaletti, G.B. Mindlin and C. Perez Garcia, Phys. Rev. Lett., 69, 3723 (1992).
- P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett., 59, 381 (1987).
- D. J. Bergman and D. Stroud, Solid State Phys. 46,14 (1992); Introduction to Percolation Theory 2-nd ed., by D. Stauffer and A. Aharony, Taylor and Francis, Philadelphia, 1991.
- V. M. Shalaev, Phys. Reports 272, 61 (1996).
- V. M. Shalaev and A. K. Sarychev, Phys. Rev. B, in press;
- A. K. Sarychev and V. M. Shalaev, Phys. Rev. Lett., submitted; P. Gadenne, et al, J. Opt. Soc. Am. B 15, 68 (1998);
- F. Brouers, et al., Phys. Rev. B 55, 13234 (1997). References:
- D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, "Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects," J. Opt. Soc. Am. B 14, 1625 (1997).
- J. W. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614 (1992).
- X. C. Zeng, D. J. Bergman, P. M. Hui, D. Stroud, "Effective-medium theory for weakly nonlinear composites," Phys. Rev. B 38, 10970 (1988).
- D. Stroud and X. Zhang, "Cubic nonlinearities in small-particle composites: local-field induced giant enhancements," Physica A 207, 55 (1994).
- F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347 (1988).
- V. K. S. Shante and S. Kirkpatrick, "An introduction to percolation theory," Adv. Phys. 20, 325 (1971).
- H. B. Liao, R. F. Xiao, J.S. Fu, P. Yu, G. K. L. Wong, and Ping Sheng, "Large third-order optical nonlinearity in Au:Si0 2 composite films near the percolation threshold," Appl. Phys. Lett. 70, 1 (1997).
- M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive Measurement of Optical Nonlinearities Using a Single Beam," IEEE Journal of Quantum Electronics 26, 760 (1990).
- J. W. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614 (1992).
- X. C. Zeng, D. J. Bergman, P. M. Hui, D. Stroud, "Effective-medium theory for weakly nonlinear composites," Phys. Rev. B 38,10970 (1988).
- F. J. Bartoli and T.A. Litovitz, J. Chem. Phys. 54, 3846 (1971).
- J.A. Bacaro and T.A. Litovitz, J. Chem. Phys. 55, 3585 (1971).
- D. McMorrow, W.T. Lotshaw, and G.A. Kenney-Wallace, IEEE J. Quantum Electron. 24, 443 (1988).
- E.W. Castner, Jr., Y.J. Chang, J.S. Melinger, and D. McMorrow, J. Luminescence, 61&62, 723 (1994).
- W.T. Lotshaw, D. McMorrow, N. Thantu, J.S. Melinger, and R. Kitchenham, J. Raman Spect. 26, 571 (1995).
- T. Hattori, A. Terasaki, T. Kobayashi, T. Wada, A. Yamada, and H. Sasabe, J. Chem. Phys. 95, 937 (1991).
- A.E. Johnson and A.B. Myers, J. Phys. Chem. 100, 7778 (1996).
- F. J. Bartoli and T.A. Litovitz, J. Chem. Phys. 56, 404 (1972). REFERENCES
- H. Jerominek, R. Tremblay, and C. Delisle, "Optical branching effect in photorefractive sensitive Ti:LiNb03 slab waveguides", IEEE J. Lightwave Technol. Vol. LT-3, p. 1105,1985.
- H. Jerominek, C. Delisle, and R. Tremblay, "Optical branching effect in Ti:LiNb03 waveguides: near-field pattern studies", Appl. Opt. Vol. 25, pp. 732-736, March 1986.
- P.A. Belander, and P. Mathieu, "Dark solitons in a Kerr defocussing medium", Appl. Opt. Vol. 26, pp. 111-113, January 1987.
- G.R. Allan, S.R. Skinner, D.R. Andersen, and A.L. Smirl, "Observation of fundamental dark spatial solitons in semiconductors using picosecond pulses", Opt. Lett. Vol. 16, pp. 156-158, Febr. 1991.
- B. Luther-Davies, and X. Yang, "Waveguides and Y junctions formed in bulk media by using dark spatial solitons", Opt. Lett. Vol. 17., pp. 496-498, April 1992.
- U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
- T. Tokizaki et.al., Appl. Phys. Lett. 65, 941 (1994).
- J.-Y. Bigot et.al. Phy. Rev. Lett., 75, 4702 (1995).
- T. S. Ahmadi, S. L. Logunov, and M. A. Elsayed, J. Phys. Chem. 100, 8053 (1996).
- M. Perner et.al., Phys. Rev. Lett. 78, 2192 (1997).
- M. Nisoli et.al., Phys. Rev. Lett. 78, 3575 (1997).
- C. K. Sun et. al., Phys. Rev. B 50, 15 337 (1994).
- R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. B 51, 11 433 (1994).
- R. Rosei and D. W. Lynch, Phys. Rev. B 5, 3883 (1972).
- W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, Opt. Lett. 12, 1014-1016 (1987).
- J. Knittel and A. H. Kung, IEEE J. Quantum Electron. 33, 2021-2028 (1997).
- G. T. Moore, K. Koch, and E. C. Cheung, Opt. Commun. 113, 463-470 (1995).
- G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 2334-2341 (1993).
- D. H. Jundt, Opt. Lett. 22, 1553-1555 (1997). Fig. 1. Schematic diagram of the singly resonant cavity-enhanced frequency tripler.
- M. Yan, L. Rothberg, F. Papadimitrakopoulos, M. Galvin, and T. Miller, Phys. Rev. Lett. 72, 1104 (1994).
- V.l. Klimov, D.W. McBranch, N.N. Barashkov, and J.P. Ferraris, Chem. Phys. Lett. 277 109 (1997).
- E.S. Maniloff, V.l. Klimov, and D.W. McBranch, Phys. Rev. B56 1876 (1997).
- F. Guo, M. Chandross, and S. Mazumdar, Phys. Rev. Lett. 74 2086 (1995).
- E. Maniloff, D. Vacar, D.W. McBranch, H.-L. Wang, B.R Mattes, J. Gao, and A.J. Heeger, Opt. Commun. 141 243 (1997). References: [1] Pochi Yeh Introduction to photorefractive nonlinear optics, (Wiley, New York, 1993)
- '. Ragini Saxena and T.Y.Chang, J.Opt. Soc. Am B9, 1467(1991)
- E.Serrano, M.Carrascosa and T. Agullo-lopez, J.Opt Soc Am B13 2587(1996)
- Pochi Yeh, Tallis Y. Chang, and Pau H. Beckwith, Opt. Lett. 13, 586(1988)
- '. J.Hong, S.Campbell and P.Yeh, Appl.Opt., 29, 3019(1990) References
- S. M. J. Kelly: Electron. Let., 28, (1992) 806.
- H. Ohizumi et al.: OFC/IOOC'93, WG8, (1993) 105.
- H. A. Haus, E. P. Ippen and K. Tamura: IEEE J. Quantum Electron. 30, (1994) 200.
- W. H. Knox: Opt. Lett., 17, (1992) 514.
- D. von der Linde: Appl. Phys. B39, (1986) 201.
- M. Endo, G. Ghosh and Y.Tanaka: Jpn. J. Appl. Phys. 36, (1997) L860. 61
- J. D. Bierlein, H. Vanherzeele and A. A. Ballman, Appl. Phys. Lett. 54, 783 (1989).
- L. K. Cheng, L. T. Cheng, J. D, Bierlein, F. C. Zumsteg and A. A. Ballman, Appl. Phys. Lett. 62, 346 (1993).
- J. C. Jacco and G. M. Loiacono, Appl. Phys. Lett. 58, 560 (1991).
- F. C. Zumsteg, J. D. Bierlein and T. E. Gier, J. Appl. Phys. 47,4980 (1976).
- N. P. Zaitseva, J. J. De Yoreo, M. R. Dehaven, R. L. Vital, K. E. Montgomery, M. Richardson, and L. J. Atherton, J. Crystal Growth, 180, 255 (1997).
- E. M. Campbell, Fusion Technology, 26, 755 (1994).
- N. Bloembergen, IEE J. Quantum Electron. QE-10, 375, (1974).
- S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen and P. Kelly, Opt. Engineering, 28, 1039 (1989).
- L. L. Chase, H. W. H. Lee, and R. S. Hughes, Appl. Phys. Lett. 57, 443 (1990).
- B. C. Stuart, M. D. Feit, S. Herman, A. M. Rev. B, 53, 1749 (1996).
- M. Runkel, B. Woods, M. Yan, J.J. DeYoreo
- J. F. Heanue, M. C. Bashaw, and L. Hesselink. Science, 265:749-752, 1994.
- C. Gu, G. Sornat, and J. Hong. Opt. Lett, 21:1070, 1996.
- Joseph W. Goodman. Statistical Optics. John Wiley and Sons, 1985.
- D. A. Waldman, et. al. SPIE, 2689:127-141, 1996. This research work has been supported in part by the ARPA/NSIC.
- REFERENCES
- S. Schiestel, CM. Cotell, C.A. Carosella, K.S. Grabowski and G.K. Hubler; Nuc. Instr. and Methods, B, 127/128, 566-569 (1997).
- S. Schiestel, C.A. Carosella, R. M. Stroud, S. Guha, CM. Cotell and K.S. Grabowski; to be published; MRS Meeting, Boston, MA,(Dec. 1997).
- R.H. Magruder III, R.F. Haglund Jr., Li Yang, C.W. White. Lina Yang, R.Dorsmville and R.R. Alfano; Appl. Phys. Lett., 62, 1730 (1993).
- CM. Cotell, S. Schiestel, C.A. Carosella,K.S. Grabowski and G.K. Hubler; Nuc. Instr. and Methods, B, 127/128, 557-561 (1997).
- R. R. Mcleod, Spectral-domain analysis and de- sign of three-dimensional optical switching and computing systems. PhD thesis, University of Colorado, 1995.
- H. C. Chen, Theory of electromagnetic waves. Mcgraw-Hill, 1983.
- R. T. Weverka, K. Wagner, R. Mcleod, K.-Y. Wu, and C. Garvin, "Low-loss acousto-optic pho- tonic switch," in Acousto-optic signal process- ing, Theory and Implementation, 2nd Edition, pp. 479-573, Marcel Decker, 1995.
- M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, Science 270 (1995) 965.
- T. Verbiest, C. Samyn, C. Boutton, S. Houbrechts, M. Kauranen, and A. Persoons, Adv. Matter, 8 (1996) 756
- K. Clays and A. Persoons, Phys. Rev. Lett. 66 (1991) 2980.
- C. C. Hsu, T. H. Huang, Y. Z. Zang, J. L. Lin, Y. Y. Cheng, J. T. Lin, H. H. Wu, C. H. Wang, C. T. Kuo, and C. H. Chen, J. Appl. Phys. 80, 5996 (1996).
- C. C. Hsu, C.F. Shu, T. H. Huang, C. H. Wang, J. L. Lin, Y. K. Wang, and Y. L. Zang, Chem. Phys. Lett. 274,446 (1997).
- M. C. Flipse, R. de Jonge, R. H. Woundenberg, A. A. Marsman, C. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
- S. Stadler, R. Dietrich, G. Bourhill, C. Brauchte, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
- O. K. Song, J. N. Woodford, and C. H. Wang, J. Phys. Chem. 106, 2819 (1997). REFERENCES
- T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji and Y. Asahara, Appl. Phys. Lett. 69, (1994). J.-Y. Bigot, J.-C. Merle, O. Cregut and A. Daunois, Phys. Rev. Lett. 75, 4702 (1995). M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt and H. Schmidt, Phys. Rev. Lett. 78, 2192 (1997). M. Nisoli, S. Stagira, S. De Silvestri, A. Stella, P. Tognini, P. Cheyssac and R. Kofman, Phys. Rev. Lett. 78, 3575 (1997).
- E. J. Heilweil and R. M. Hochstrasser, J. Phys. Chem. 82, 4762 (1985)
- K. Puech, W. Blau, A. Grund, C. Bubeck and G. Cardenas, Opt. Lett. 20, 1613 (1995).
- C. Meyer, G. Lüpke, Z.G Lü, A. Gölz, H. Kurz, and G. Lucovsky, J. Vac. Sei. Technol. B14, 3107 (1996).
- J. G. Mihaychuk, J. Bloch, Y. Liu, and H. M. van Driel, Opt. Lett. 20, 2063 (1995).
- J. Bloch, J. G. Mihaychuk, and H. M. van Driel, Phys. Rev. Lett., 77, 920 (1996).
- N. Shamir, J. G. Mihaychuk, and H. M. van Driel, J. Vac. Sei. Technol. A15, 2081 (1997). References
- R. Macdonald, P. Meindl, G. Chilaya, D. Sikharulidze, Opt. Comm. (in press, 1998)
- D. Sikharulidze, G. Chilaya, K. Praefcke, D. Blunk, Liquid Crystals 23, 439 (1997)
- D. Ianetz, K. Praefcke, D. Singer, Liquid Crystals 13, 247 (1993)
- P. Günther and J.-P. Huignard, "Photorefractive Materials and their Applications /", in Topics in Applied Physics 61, Springer-Verlag, Berlin (1988). P. Yeh, "Introduction to Photorefractive Nonlinear Optics", John Wiley & Sons, Inc., New York (1993)
- I.C. Khoo, 1EEEJ. Quant. Electr. 32, 525 (1996). I.C. Khoo, Opt. Lett. 20, 2137 (1995). I.C. Khoo, Opt. Lett. 19, 1723 (1994)
- D. Adam, P. Schuhmacher, J. Simmerer, L. Haeussling, K. Siemensmeyer, K.H. Etzbach and D. Haarer, Nature 371, 141 (1994). D. Adam, W. Roemhildt and D. Haarer, Jpn. J. Appl. Phys. 35, 1826 (1996).
- D. Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, H. Ringsdorf, P. Schuhmacher and K. Siemensmeyer, Phys. Rev. Lett. 70, 457 (1993) References
- P. K. Schmidt and G. W. Rayfield, Appl. Opt. 33, 4286 (1994);
- Q. Song, C. Wan, and C. K. Johnson, J. Phys. Chem. 98,1999 (1994);
- E. Hendrickx, K. Clays, A. Persoons et al., J. Am. Chem. Soc. 117, 3547 (1995);
- P. Allcock, D. L. Andrews, S. R. Meech, and A. J. Wigman, Phys. Rev. A 53, 2788 (1996).
- D. L. Andrews, P. Allcock, and A. A. Demidov, Chem. Phys. 190, 1 (1995).
- A. V. Balakin, D. Boucher, E. Fertein et al., Opt. Commun. 141, 343 (1997);
- A. V. Balakin, D. Boucher, N. I. Koroteev et al., JETP 85, 52 (1997).
- D. Kim, C. S. Mullin, and Y. R. Shen, J. Opt. Soc. Am. B 14, 2530 (1997).
- J. A. Giordmaine, Phys. Rev. A 138, 1599 (1965).
- N. I. Koroteev, JETP 79, 681 (1994).
- S. N. Volkov, N. I. Koroteev, and V. A. Makarov, JETP 86, no. 5 (1998) (to be published).
- H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, New Jersey, 1984).
- J. F. Ward and G. H. C. New, Phys. Rev. 185, 57 (1969);
- R. B. Miles and S. E. Harris, IEEE J. Quantum Electron. QE-9, 470 (1972);
- G. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
- References F. J. Duarte (Ed.), "High Power Dye Lasers", Springer Series in Optical Sciences, vol. 65, chapter 3 (C. Jensen), 1991.
- W. Kaiser and M. Maier, "Laser Handbook 2, Eds. F. T. Arecchi and E. O. Schulz-Dubois, North Holland pubs., Amsterdam, 1972.
- F.Garzia, C.Sibilia, M.Bertolotti, R.Horak, and J.Bajer, Optics Comm. 108 (1994), 47.
- A.B. Aceves, J.V.Moloney, and AC.Newell, Opt.Lett. 13 (1988), 1002.
- AB.Aceves, P.Varatharajah, AC.Newell, E.M.Wright, G.I.Stegman, D.R.Heatley, J.V.Moloney, and H.Adachihara, J.Opt.Soc.Am.B 7 (1990), 963.
- F.Garzia, C.Sibilia, and M.Bertolotti, Optics Comm. 139 (1997), 193. References
- G. P. Agrawal, "Nonlinear Fiber Optics," Academic Press, 1995.
- K. S. Yee, IEEE Trans, on AP, Vol.14, No.3, 1996.
- P. M. Goorjian, et al., IEEE Jour, of QE, Vol.28, No.10, 1992.
- R. Luebbers, F. Hansberber, IEEE Trans, on AP, Vol.40, 1992.
- D. M. Sullivan, IEEE Trans, on AP, Vol.44, No.l, 1996.
- G. Mur, IEEE Trans, on EMC, Vol.23, No.4, 1981.
- J. P. Berenger, Jour, of Comp. Phys., Vol.114, No.l, 1994.
- K.T.V. Grattan and Z.Y. Zhang, Fiber Optic Fluorescence Thermometry (Chapman and Hall, London, 1995).
- G.W. Baxter, S.A. Wade, S.F. Collins, G. Monnom and E. Maurice, SPIE Proc. 2841, 249 (1996).
- T. Sun, Z.Y. Zhang, K.T.V. Grattan, A.W. Palmer and S.F. Collins, Rev. Sei. Instrum., accepted for publication, 1997.
- G. I. Stegeman, D J. Hagan, L. Tomer, Optical and Quantum electronics, 28, 1691(1996).
- R. DeSalvo, D. J. Hagan, M.Sheik-Bahae, G. Stegeman, and E. W. Van Stryland, Opt. Lett. 17, 28 (1992).
- Sungwon Kim, Ph.D. Dissertation, Univ.of Central Florida, Orlando, Florida (1996).
- R. DeSalvo, Ph.D. Dissertation, Univ.of Central Florida, Orlando, Florida (1993).
- D. Y. Kim, W. E. Torruellas, J. Kang, C. Bosshard, G. I. Stegeman, P. Vidakovic, J. Zyss, W. E. Moerner, R. Twieg and G. Bjorklund, Optics Letters, 19, 868(1994).
- G.G.Basiev, B.I.Denker, et al., Sov. J. Quant. Electron., 1982, vJ2, p.984.
- J.J.Degnan. IEEE J. Quant. Electon., 1995, OE-31, p.1890.
- G.Xiao and MBass. IEEE J. Quant. Electron., 1997, OE-33, p.41.
- N.N.IPichev, A.V.Kir'yanov, et al. Laser Physics, 1993, yj, p. 182.
- N.N.Fichev, A.V.Kir'yanov, et al. JETP, 1994, y/78, p.768.
- N.N.H'ichev, E.S.Gutyamova, et al. Quant. Electron., 1997, yJA (in press).
- S. C. Cerda, S. B. Cavalcanti and J. M. Hickmann, European Journal of Physics (1998).
- A. S. Rodrigues, M. Santagiustina and E. M. Wright, Phys. Rev. A 52, 3231 (1995).
- G.I. Stegeman et al., Int. J. Nonlinear Opt. Phys. 3 347 (1994).
- M. Nakazawa, E. Yamada and H. Kubota, Phys. Rev. Lett. 66, 2625 (1991).
- M. Nakazawa, K. Suzuki, Y. Kimura and H. Kubota, Phys. Rev. Lett. 45, R2682 (1992).
- S. L. McCall and E. H. Hahn, Phys. Rev. 183, 82 (1969);
- L. Allen and J. H. Eberly, Optical Resonance and Two Level Atoms, Wiley, New York (1975).
- J. M. Hickmann, A. S. L. Gomes, C. B. de Araujo and A. S. Gouveia-Neto, Ultrafast Phenom- ena VIII, Springer-Verlag Series of Chemical Physics, volume 55, 323 (1993).
- G. Vemuri, G. S. Agarwal and K. V. Vasada, Phys. Rev. Lett. 79, 3889 (1997). REFERENCES
- W. Kimura et al., Phys. Rev. Lett. 74, 546 (1995).
- A. van Steenbergen et al., Phys. Rev. Lett. 77, 2690 (1996).
- M. Everett et al., Nature, 368, 527 (1994)
- A. Modena et al., Nature, 377, 606 (1995).
- A. P. Alivasatos, Science 271, 933 (1996).
- V. Klimov, in Handbook on Nanostructured Materials and Nanotechnology, edited by H. Nalwa (to be published by Academic Press, 1998).
- V. Klimov and D. McBranch, Phys. Rev. B 55, 13173 (1997).
- U. Bockelman and G. Bastard, Phys. Rev. B 42, 8947 (1990).
- A. L. Efros, V. A. Kharchenko, and M. Rosen, Solid State Commun. 93, 281 (1995).
- V. Klimov and D. McBranch, Opt. Lett. 23, (February, 1998).
- V. Klimov, S. Hunsche, and H. Kurz, Phys. Rev. B 50, 8110 (1994).
- V. Klimov, P. Haring Bolivar, and H. Kurz, Phys. Rev. B 53, 1463 (1996). References:
- F. Jahnke, M. Kira and S.W. Koch, Z. Physik B104, 559 (1997);
- F. Jannke et al., Phys. Rev. Lett. 77, 5257 (1996)
- M. Kira et al. Phys. Rev. Lett. 79, 5170 (1997);
- M. Kira, F. Jahnke, and S.W. Koch, to be published.
- II. B. Nijhof, N. .1. Doran, W. Forysiak and F. M. Knox, Electron. Lett, 33, 1726 (1997).
- V. S. Grigoryau, T. Yu, E. A. Golovchenko, C. R. Menyuk, and A. N. Pilipetskii, Opt. Lett. 22, 1(509 (1997).
- Anderson, Phys. Rev. A 27, 3135 (1983). I. R. Gabitov, E. G. Shapiro, and S. K. Tu- ritsyn, Opt. Connnun. 134, 317 (1997). M. Matsumoto and H. A. Hans, IEEE Photon. Technol. Lett. 9, 785 (1997).
- G. M. Carter, .].
- M. Jacob, C. R. Menyuk, E. A. Golovchenko, and A. N. Pilipetskii. Opt. Lett. 22, 513 (1997).
- A. Ludwig, W. Pieper, H. G. Weber, D. Breuer, K. Petermann, F. Küppers, and A. Mattheus: "Unrepeatered 40Gbit/s RZ single channel transmission over 150km of standard singlemode fibre at 1.55um", Electron. Lett., 1997, 33, (1), pp. 76-77.
- K. Suzuki, N. Ohkawa, M. Murakami, and Kazuo Aida: "Unrepeatered 40 Gbit/s RZ signal transmission over 240km convential single mode fiber", ECOC'97, Edinburgh 1997, pp. 27-30.
- R. J. Nuyts, Y. K. Park, and P. Gallion: "Dispersion equalization of a 10Gb/s repeatered transmission system using dispersion compensating fibres", IEEE J. Lightwave Technol., 15, (1), pp. 31-42, 1997.
- B. Schmauß, M. Berger, M. Rastovits-Wiech, A. Schinabeck, and D. Werner: "Modular dispersion compensation schäme for high bitrate single channel and WDM transmission with varying channel power", ECOC'97, Edinburgh, 1997, pp. 239-242
- D. Breuer and K. Petermann: "Comparison of NRZ-and RZ-modulation format for 40Gb/s TDM standard- ' fiber systems", IEEE Photon. Technol. Lett., 9, (3), pp. 398-400, 1997
- F. Favre, D. Le Guen, M. L. Moulinard, M Henry, G. Michaud, F. Devaux, E. Legros, B. Charbonnier, and T. Georges: "Demonstration of soliton transmission at 20Gbit/s over 2200km of standard fibre with dispersion compensation and prechirping", Electron. Lett., 33, (6), pp. 511-512, 1997.
- Sokoloff, J.P., Prucnal, P.R., Glesk, I. and Kane, M.: 'A terahertz optical asymmetric demultiplexer (TOAD)', IEEE Photonics Technol. Lett., 5, pp787-790 (1993)
- Eiselt, M., Pieper, W. and Weber, H.G.: 'SLALOM: semiconductor laser amplifier in a loop mirror', J.Lightwave Technol., 13, pp2099-2112 (1995)
- Ellis, A.D. and Spirit, D.M.: 'Compact 40 Gbit/s optical demultiplexer using a GalnAsP optical amplifier', Electron.Lett., 29, pp2115-2116 (1993)
- R.J. Manning, Ellis, A.D., Poustie, A.J. and Blow, K.J.: 'Semiconductor laser amplifiers for ultrafast all-optical signal processing', J. Opt. Soc. Am. B, 14, pp3204- 3216 (1997)
- Kelly, A.E., Marcenac, D.D., and Nesset, D.: '40 Gbit/s wavelength conversion over 24.6 nm using FWM in a semiconductor optical amplifier with an optimised MOW active region', Electron. Lett., 33, pp2123-2124 (1997)
- Westbrook, L.D., and Adams, M.J.: 'Simple expressions for the linewidth enhancement factor in direct-gap semiconductors', IEE Proc, 134, Pt J, pp209-214 (1987) REFERENCES
- C. Bosshard, R. Spreiter, M. Zgonik and P. Günther, Phys. Rev. Lett. 74, 2816 (1995);
- A. A. Zozulya and D. Z. Anderson, Phys. Rev. A 51, 1520 (1995)
- A. G. Kalocsai and J. W. Haus, Opt. Commun. 97, 239 (1993);
- Phys. Rev. A 49, 574 (1994)
- M. J. Ablowitz and H. Segur, J. Fluid Mech. 92, 691 (1979);
- "Solitons and the inverse scattering transform" (SIAM, Philadelphia, 1981)
- D. J. Benney and G. J. Roskes, Stud. Appl. Math. 48, 377 (1969);
- V. E. Zakharov, Sov. Phys. JETP35, 908 (1972) References:
- M. H. Anderson, J.R. Ensher, et al, Science 269, 198 (1995);
- C. C. Bradley, C. A. Sackett, et al, Phys. Rev. Lett. 75, 1687 (1995);
- K. B. Davis, M.-O. Mewes, et al, Phys. Rev. Lett. 75, 3969 (1995).
- D. R. Tilley and J. Tilley, Superfluidity and Superconductivity (Hilger, Bristol, 1990).
- B.V. Svistunov and G.V. Shlyapnikov, Sov. Phys. JETP 71, 71 (1990);
- H. D. Politzer, Phys. Rev. A 43, 6444 (1991).
- N. Suzuki, T. Ozeki, J. of Lightwave Technology 11, 1486 (1993).
- A. Djupsjobacka, IEEE Photonics Technology Letters, 4, 41 (1992)
- F. Matera, M. Settembre, Journal of Lightwave Technology, 14, 1 (1996).
- B. A. Malomed, F. Matera, M. Settembre, Optics Communications, 143, 193 (1997)
- F. M. Knox, W. Forysiak, N. J. Doran, IEEE Journal Lightwave Technology, 13, 1955 (1995).
- M. Midrio, F. Matera, M. Settembre, Electronics Letters, 33, 1066 (1997). TuC6 12:30pm -2:30pm Nondegenerate Four-Wave Mixing in a Double-A System under the Influence of Coherent Population Trapping Min Xiao, BaolongLw, and W.H. Burkett Department of Physics, University of Arkansas Fayetteville, Arkansas 72701 Phone: (501) 575-6568; Fax: (501) 575-4580 e-mail: [email protected]
- M. Jean, G.Y. Yin, J.E. Field, and S.E. Harris, Opt. Lett. 18, 998 (1993).
- G.Z. Zhang, K. Hakuta, and B.P. Stoicheff, Phys. Rev. Lett. 71, 3099 (1993).
- S. Babin, U. Hinze, E. Tiemann, and B. Wellegehausen, Opt. Lett. 21, 1186 (1996).
- P.R. Hemmer, et al., Opt. Lett. 20, 982 (1995).
- B.S. Ham, M.S. Shahriar, and P.R. Hemmer, Opt. Lett. 22, 1138 (1997).
- Y. Li, and Min Xiao, Opt. Lett. 21, 1064 (1996).
- J. Gea-Banacholoche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A, 51, 576 (1995).
- O. Poster, M. Mürtz, J.S. Wells, L. Hollberg, and J.T. Murray, Opt. Lett. 21, 1387 (1996), and references therein.
- M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992);
- L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
- P.T. Nee and N.C. Wong, Opt. Lett. 23, 46 (1998).
- O. Pfister, J.S. Wells, L. Hollberg, L. Zink, D.A. Van Baak, M.D. Levenson, and W.R. Bosenberg, Opt. Lett. 22, 1211 (1997).
- A. Dax, J.S. Wells, L. Hollberg, A.G. Maki, W. Urban, J. Mol. Spectr. 168, 416 (1994). E. Bachern, A. Dax, T. Fink, A. Weidenfeiler, M. Schneider, W. Urban, Appl. Phys. B 57, 185 (1993).
- P.K. Gallagher, H.M. O'Bryan, E.M. Gyorgy, and J.T. Krause, Ferroelectrics 75, 71 (1987).
- M.V. Hobden and J. Warner, Phys. Lett. 22, 243 (1966).
- G.J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
- D.E. Zelmon, D.L. Small, and D. Jundt, J. Opt. Soc. Am. B 14, 3319 (1997). TuC8 12:30pm -2:30pm 3D, true color photorefractive hologram
- Christy A. Heid. Brian P. Ketchel. Gary L. Wood, U.S. Army Research Laboratory, AMSRL-SE-EO, 2800
- Powder Mill Rd., Adelphi, MD 20783-1197, phone: (301)721-3408, fax: (301)721-3400, [email protected]
- Richard J. Anderson, National Science Foundation, 4201 Wilson Boulevard, Suite 875, Arlington, Virginia 22230, phone: (703)306-1683, fax: (703)306-0456, [email protected]
- Gregory J. Salamo, University of Arkansas, Physics Department, Fayetteville, Arkansas 72701, phone: (501)575-5931, fax: (501)575-4580, [email protected]
- B. P. Ketchel, G. L. Wood, R. J. Anderson, G. J. Salamo, Appl. Phys. Lett. 71, 7 (1997).
- D. M. Pepper, J. au Yeung, D. Fekete, and A. Yariv, Opt. Lett. 3, 7 (1978).
- G. L. Wood, et al., Photorefractive Materials in Spatial Light Modulators: Materials Devices and Applications, U. Efron, ed., Marcel Dekker, N.Y. 161-215 (1994).
- R. W. Boyd, Nonlinear Optics, Academic Press, Inc., N.Y. (1992).
- D. S. Chemla, D. A. B. Miller, and P. W. Smith, Opt. Eng. 24, 5
- K. Tai, A. Mysyrowicz, R. J. Fischer, R. E. Slusher, and A. Y. Cho, Phys. Rev. Lett., 62, 1784 (1989)
- C. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, Electron. Lett., 29, 37 (1993)
- J. Khurgin J. Opt. Soc. Am, 11, 624 (1994)
- A. Obeidat and J. Khurgin J. Opt. Soc. Am, 12, 1222 (1995)
- S. Li and J. B. Khurgin, J. Appl. Phys. , 1 73, 4367 (1993) References
- K. Misawa, H. Ono, K. Minoshima, and T. Kobayashi, Appl. Phys. Lett. 63, 577 (1993).
- T. Kobayashi and K. Misawa, J. Lumin. 72, 38 (1997).
- K Misawa and T. Kobayashi, Nonlin. Opt. 14,103 (1995). References :
- I.V. Gusev, B.Ya Zel'dovich, V.A. Krivoshchekov and V.N. Sadovskii, JEPT Lett. 55, 178 (1992).
- S. Stallinga, M.M. Wittebrood, D.H. Luijendijk and The. Rasing, Phys. Rev. E 53, 6085 (1996).
- Holger Stark and Tom C. Lubensky, Phys. Rev. Lett. 77, 2229 (1996).
- P.G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarend Press, Oxford, 1993), pp. 139-150, 227-230.
- I.C. Khoo, Liquid Crystals (John Wiley & Sons, Inc., New York, 1995), Chapter 5.
- Hiroshi Ono and Noburhiro Kawatsuki, Optics Communications 139, 60 (1997).
- I.C. Khoo, R.R. Michael and G.M. Finn, Appl. Phys. Lett. 52, 2108 (1988).
- S.-H. Chen and J. J. Wu, Appl. Phys. Lett. 52, 1998 (1988).
- I.C. Khoo, S.L. Zhuang and S. Shepard, Appl. Phys. Lett. 39, 937 (1981).
- S.D. Durbin, S.M. Arakelian nd Y.R. Shen, Optics Letters 6, 411 (1981).
- S.-H. Chen and Y. Shen, J. Opt. Soc. Am. B 14, 1750 (1997).
- S.-H. Chen, T.-J. Chen, Y. Shen and C.-L. Kuo, Liq. Cryst., 14, 185 (1993).
- H. Hakemi, E.F. Jagodzinski and D.B. DuPre, Mol. Cryst. Liq. Cryst. 91, 129 (1983).
- R. Quintero-Torres and M. Thakur, Appl. Phys. Lett. 66, 1310 (1995).
- G. M. Carter, M. K. Thakur, Y. J. Chen, and J. V. Hryniewicz, Appl. Phys. Lett. 47, 457 (1985).
- E. P. Ippen, C. V. Shank, and T. K. Gustafson, Appl. Phys. Lett. 24, 190 (1974).
- R. H. Stolen and C. Lin, Physical Review A 17, 1448 (1978). TuC14 12:30pm -2:30pm
- References !• B. R. Taylor, S. M. Kauzlarich, H. W. H. Lee, and G. R. Delgado, Chem. Mat. accepted (1997).
- -R. A. Bley and S. M. Kauzlarich, /. Am. Chem. Soc, 118, 12461 (1996).
- -R. A. Bley and S. M. Kauzlarich, in Nanoparticles in Solids and Solutions, edited by J. H. Fendler and I. Dekäny (Kluwer Academic Publishers, Netherlands, 1996), p. 467-475.
- -G. R. Delgado, H. W. H. Lee, S. M. Kauzlarich, and B. R. Taylor, "Comparative Optical Studies of Chemically Synthesized Silicon Nanocrystals," Materials Research Society Symposium Proceedings, 457, (1997).
- -H. W. H. Lee, G. R. Delgado, R. A. Bley, et al., Phys. Rev. B, in preparation; G. R. Delgado and H. W. H. Lee, Phys. Rev. B, submitted.
- -C. Delerue, G. Allan, E. Martin, and M. Lannoo, in Porous Silicon Science and Technology, edited by J. C. Vial and J. Derrien (Springer-Verlag, New York, 1995), p. 91-110.
- References: [1] G. D. Miller, R. G. Batchko, M. M. Fejer, R. L. Byer, Proc. SPIE 2700, 34-45 (1996)
- S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14,2716 (1997)
- S.A.Boothroyd. .l.Chrostowski. DJ.Simkin. "Dual time-constant phase conjugate dynamics in Cr + :Er' + :YA10.?", CLFO IW. Anaheim. California, May 8-13. Technical digest pp 37-38.
- A.G.Skirtach. D.I.Simkin. S.A.Boothroyd. "Nondegenerate two-wave mixing in Cr + :Er + :YA10/, J. Opt. Soc. Am. B13. 546-552. 19%.
- I. McMichael. R. Saxena. T. Y. Chang. Q. Shu, S. Rand. J. Chen. H. Tuller, "High-gain nondegenerate two-wave mixing in CnYAlOf. Opts. Lett. 19. 1511-1513. 1994.
- McMichael. T. Y. Chang. "Self-oscillation and self-pumped phase conjugation in CrYAlO/', CLEO 1996, Anaheim. California. June 2-7. Technical digest pp 509-510.
- B. Fischer, J. L. Zyskind, J. W. Sulhoff, D. J. DiGiovanni, "Nonlinear wave mixing and induced gratings in erbium-doped fibre amplifiers," Opt. Lett., vol. 18, pp. 2108 -2110, 1993.
- S. J. Frisken, "Transient Bragg reflection gratings in erbium-doped fiber amplifiers," Opt. Lett., vol. 17, pp. 1776-1778, 1992.
- P. L. Chu, B. Wu, "Optical switching in twin-core erbium-doped fibres," Opts. Lett., vol. 17, pp. 255 - 257, 1992.
- S. A. Boothroyd, J. Chrostowski, M. S. O'Sullivan, "Determination of the phase of the complex refractive index by transient two-wave mixing in saturable absorbers," Opt. Lett. vol. 14, pp. 946-948, 1989.
- E. Desurvire, "Study of the complex atomic susceptibility of erbium-doped fibre amplifiers," J. Lightwave Tech., vol. 8, pp. 1517-1527, 1990.
- T. Kartaloglu, K. G. Köprülü, and O. Aytiir, Opt. Lett. 22, 280 (1997).
- K. G. Köprülü, T. Kartaloglu, and O. Aytür, in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997) p. 457.
- G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 961 (1993).
- O. Aytür and Y. Dikmelik, to be published in IEEE J. Quantum Electron. 34, March 1998.
- R. J. Ellingson and C. L.Tang, Opt. Lett. 18, 438 (1993).
- E. C. Cheung, K. Koch, and G. T. Moore, Opt. Lett. 19, 1967 (1994).
- T. Kartaloglu, K. G. Köprülü, and 0. Aytür, Opt. Lett. 22, 280 (1997).
- K. G. Köprülü, T. Kartaloglu, and 0. Aytür, in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997) p. 457.
- G. Jonusauskas, J. Oberle, E. Abraham and C. Rulliere, Optics Commun., 137 (1997) 199.
- G. Jonusauskas, J. Oberle, E. Abraham and C. Rulliere, Optics Commun., 112(1994)80.
- K. Minoshima, G. Jonusauskas, C. Rulliere and H. Matsumoto, OSA Annual Meet. (1997) California.
- A. Carena, et al., IEEE Photon. Technol. Lett., 9, p. 535, 1997.
- M. Karlsson, J. Opt. Soc. Amer. B, 12, p. 2071, 1995.
- G. Cappellini and S. Trillo, J. Opt. Soc. Amer. B, 8, p. 824, 1991.
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
- M. E. Marhic et al., Optics Lett., 21, p. 573, 1996. References 1. Carotenoids, ed. G. Britton, S. Liaaen-Jensen and H. Pfander (Birkhäuser Verlag, Basel, 1995).
- J. R. Heflin, Y. M. Cai, and A. F. Garito, J. Opt. Soc. Am. B 8, 2132 (1991).
- D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, IEEE J. Quantum Electron. 24, 443 (1988).
- M. E. Orczyk, M. Samoc, J. Swiatkiewicz, and P. N. Prasad, J. Chem. Phys. 98, 2524 (1993).
- P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, (Wiley, New York, 1991).
- G. M. Carter, M. K. Thakur, Y. J. Chen, and J. V. Hryniewicz, Appl. Phys. Lett. 47, 457, (1985).
- G. M. Carter, J. V. Hryniewicz, M. K. Thakur, Y. J. Chen, and S. E. Meyler, Appl. Phys. Lett. 49, 998, (1985).
- T. Bj0rnholm, D. R. Greve, T. Geislar, J. C. Petersen, M. Jayaraman, and R. D. McCullough, Synthetic Metals 84, 531,(1997).
- O. Haba, T. Hayakawa, M. Ueda, H. Kawaguchi, and T. Kawazoe, Reactive Polymers, to be published.
- P. G. Huggard, W. Blau, and D. Schweitzer, Appl. Phys. Lett. 51, 2183, (1987).
- M. Sheik-bahae, A.A. Said, and E. W. Van Stryland, Opt. Lett. 14, 955, (1989).
- I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).
- J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
- S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, Appl. Phys. Lett. 66, 3410 (1995).
- S. Koh, T. Kondo, H. Yaguchi, R. Ito, T. Usami, and Y. Shiraki, submitted to J. Appl. Phys.
- H. Kroemer, J. Cryst. Growth 81, 193 (1987).
- J. Varrio, H. Asonen, J. Lammasniemi, K. Rakennus, and M. Pessa, Appl. Phys. Lett. 55, 1987 (1989).
- K. Adomi, S. Strite, H. Morkog, Y. Nakayama, and N. Otsuka, J. Appl. Phys. 69, 220 (1991).
- T. Ueda, S. Nishi, Y. Kawarada, M. Akiyama, and K. Kaminishi, Jpn. J. Appl. Phys. 25, L789 (1986).
- for example, I. B. Talanina and M. A. Collins, Solid State Commun. 88, 541 (1993)
- K. Ema and M. Kuwata, Phys. Rev. Lett. 75, 224 (1995)
- P. N. Butcher and D. Cutter, The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, 1990)
- References
- T. Ishihara, J. Takahashi, and T. Goto, Phys. Rev. B42, 11099 (1990).
- T. Kataoka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, Phys. Rev. B47, 2010 (1993).
- T. Kondo, S. Iwamoto, S. Hayase, K. Tanaka, J. Ishi, M. Mizuno, K. Ema and R. Ito, submitted to Solid State Commun.
- P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, Opt. Lett. 20,982(1995).
- T. T. Grove, M. S. Shahriar, P. R. Hemmer, Prem Kumar, V. K. Sudarshanam, and M. Cronin-Golomb, Opt. Lett. 22, 769 (1997).
- V. K. Sudarshanam, M. Cronin-Golomb, P. R. Hemmer, and M. S. Shahriar, Opt.Lett. 22, 1141 (1997).
- T.T. Grove, E. Rousseau, X. -W. Xia, M.S. Shahriar, and P.R. Hemmer, Opt. Letts. 22, 1677(1997)).
- "Polarization Selective Motional Holeburning for High Efficiency, Degenerate Optical Phase Conjugation in Rubidium," X. Xia, D. Hsiung, T. Grove, P.R. Hemmer, and M.S. Shahriar, submitted to Opt. Letts."
- High Gain Optical Phase Conjugation Using Degenerate Four Wave Mixing via Coherent Population Trapping in Moving Atoms," X. Xia, D. Hsiung, M.S. Shahriar, T.T. Grove, and P.R. Hemmer, to be presented at the Quantum Electronics and Laser Science Conference, 1998.
- B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76,1627(1996).
- B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, J. Opt. Soc. Am. B 14, 2980(1997). Wednesday Not Available WB1 Engineered Nonlinear Materials: Progress in QPM Materials and Devices Robert L. Byer, Stanford University, Stanford, CA WB5 Toward an Optical Synthesizer: Widely Tunable c.w. Parametric Oscillators J. Mlynek, Universität Konstanz, Konstanz, Germany WD2 Comparisons of Different Methods of Generation of Terahertz Radiation Jacob Khurgin, Johns Hopkins University, Laurel, MD
- WA1 (Invited) 8:00am -8:30am References 11 ] J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749-752 (1994).
- S. S. Orlov, L. Hesselink, A. Akella, and R. R. Neurgaonkar, "High Sensitivity non- Volatile Two-Color Recording in Lithium Niobate", Conference on Lasers and Electro- Optics'97, Baltimore, MD, postdeadline paper CPD29.
- G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffhagle, C. M. Jefferson, and B. Marcus, Opt. Lett. 22, 639-641 (1997).
- Rockwell, private communication REFERENCES
- D. Psaltis and F. Mok, "Holographic memories", Scientific American 273, 70-76 (November 1995)
- F. H. Mok, G. W. Burr, and D. Psaltis, "System metric for holographic memory systems", Opt. Lett. 21, 896-898 (1996)
- K. Buse, "Light-induced charge transport processes in photorefractive cyrstals", Appl. Phys. B 64, 273-291 and 391- 407 (1997)
- N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals", Ferroelectrics 22,949,961 (1979)
- K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E Krätzig "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997)
- P. M. Garcia, K. Buse, D. Kip, and J. Frejlich, "Self-stabilized holographic recording in LiNb0 3 :Fe crystals", Opt. Commun. 117,235-240(1995),
- R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmaier, "Influence of Mg doping and composition on the light-induced charge transport in LiNbOj", phys. stat. sol. (a) 106, 89-98 (1988)
- K. Buse, A. Gerwens, S. Wevering, and E. Krätzig, "Charge transport parameters of photorefractive strontium-barium
- -D.Voloshchenko, A.Khyzhnyak, Yu.Reznikov and V.Reshetnyak, Jpn. J. Appl. Phys. 34, 566 (1995)
- -F.Simoni, O.Francescangeli, Y.Reznikov and S.Slussarenko, Opt.Lett. 22, 549.(1997)
- -S.Slussarenko, O.Francescangeli, F.Simoni and Y.Reznikov, Appl.Phys.Lett. 22, 549 (1997) References:
- J. J. Amodei and D. L. Staebler, Holographic pattern fixing in electrooptic crystals. Appl. Phys. Lett. 18, 540-542 (1971).
- F. Micherson and G. Bismuth, Electrical control of fixation and erasure of holographic patterns in ferroelectric materials. Appl. Phys. Lett. 20, 79-81 (1972)
- D. Von der Linde, A. Glass, and K. F. Rodgers, Multiphoton photorefractive processes for optical storage in LiNb0 3 . Appl. Phys. Lett. 25, 155-157 (1974) References
- A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann and D. Harter, Opt. Lett. 22, 105 (1997)
- A. Galvanauskas, M. E. Fermann, D. Harter, J. D.Minelly, G. G. Vienne, J. E. Caplen, in Conference on Lasers and Electro-Optics: Opt. Soc. Am. Technical Digest Series 9, 495 (1996)
- M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou and M. M. Fejer, Opt. Lett. 22, 1341 (1997)
- R. W. Terhune, P. D. Maker, and C. M. Savage, Appl. Phys. Lett. 2, 54 (1963).
- P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).
- R. C. Eckardt and C. H. Lee, Appl. Phys. Lett. 15, 425 (1969).
- C. Flytzanis and N. Bloembergen, Prog. Quant. Electr. 4, 271 (1976).
- G. R Meredith, J. Chem. Phys. 77, 5863 (1982).
- P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
- F. Hache, A. Zeboulon, G. Gallot, and G. M. Gale, Opt. Lett. 20, 1556 (1995).
- R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, and E. W. Van Stryland, Opt. Lett. 17, 28 (1992).
- I. V. Tomov, B. Van Wonterghem, and P. M. Rentzepis, Appl. Opt. 31, 4172 (1992).
- Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, IEEE J. Quantum Electron. QE-25, 1196 (1986).
- C. G. Durfee, S. Backus, M. M. Murnane and H.C.. Kapteyn, Opt. Lett. 22,1565 (1997).
- S. Backus, C. Durfee, M. M. Murnane and H.C. Kapteyn, Rev. Sei. Instrum. to be published (1998).
- J. Ringling, 0. Kittelmann, F. Noack, G. Korn and J. Squier, Opt. Lett. 18, 2035 (1993).
- S. Backus, J. Peatross, E. Zeek, A. Rundquist, G. Taft, M.M. Murnane, and H. C. Kapteyn, Opt. Lett. 21, 665 (1996).
- C. W. Siders, N. Turner III, M. Downer, A. Babine, A. Stepanov, A. M. Sergeev, J. Opt. Soc. Am. B 12, 330 (1996).
- S. Backus, J. Peatross, C. P. Huang, H.C. Kapteyn, and M.M. Murnane, Opt. Lett. 20, 2000 (1995).
- S. Backus, C. Durfee, G. Mourou, H. Kapteyn and M. Murnane, Opt. Lett. 22, 1256 (1997).
- C. Durfee, S. Backus, M. M. Murnane, and H.C. Kapteyn, IEEE J. Sei. Top. in Quant. Elect., to be published (1998).
- A. Rundquist, C. Durfee, S. Backus, C. Herne, Z. Chang, M. Murnane, and H. C. Kapetyn, Science, submitted (1998).
- M. Kauranen, J. J. Maki, T. Verbiest, S. Van Elshocht, and A. Persoons, Phys. Rev. B 55, R1985 (1997).
- R. L. Dubs, S. N. Dixit, and V. McKoy, Phys. Rev. Lett. 54, 1249 (1985).
- T. Verbiest, M. Kauranen, Y. Van Rompaey, and A. Persoons, Phys. Rev. Lett. 77, 1456-1459 (1996).
- N. A. Cherepkov and V. Kuznetsov, J. Chem. Phys. 95, 3046 (1991).
- C. S. Feigerle, R. N. Compton, L. E. Cuellar, N. A. Cherepkov, and L. V. Chernysheva, Phys. Rev. A 53, 4183 (1996).
- R. Holzner, J. Simonet, L. Flepp, B. Röhricht, P. Eschle, S. Dangel, U. Rusch, H. Schmid, E. Brun. Using nuclear spins, radio waves, sodium atoms, and laser light to investigate spatiotemporal nonlinear systems, Opt. Engineering 34, 2315-2323 (1995)
- R. Holzner, S. Dangel. Optical pumping-induced spatio-temporal modifications to propagation, polarization and intensity of laser beams in sodium vapor, to be published in Quantum Semiclass. Opt. 10 (1998)
- R. Holzner, P. Eschle, S. Dangel, R. Richard, H. Schmid, U. Rusch, B. Röhricht, R. J. Ballagh, A. W. McCord, W. J. Sandle. Observation of magnetic-field-induced laser beam deflection in sodium vapor, Phys.Rev.Lett. 78, 3451-3454 (1997)
- S. Dangel, R. Holzner. Semiclassical theory for the interaction dynamics of laser light and sodium atoms including the hyperfme structure, Phys. Rev. A 56, 3937-3949 (1997)
- A.C. Tarn, W. Happer. Long-range interactions between CW self-focused laser beams in atomic vapour, Phys. Rev. Lett. 38, 278-282 (1977)
- B. Röhricht, A.W. McCord, M. Brambilla, F. Prati, S. Dangel, P. Eschle, R. Holzner. Spatial separation of circularly polarized laser beams in sodium vapor, Opt. Commun. 118, 601-606 (1995)
- D. Crispin Jones, Metin S. Mangir, and David A. Rockwell, "A Stimulated Brillouin Scattering Phase-Conjugate Mirror Having a Peak-Power Threshold <100W", Opt. Comm._23_, 175-181, (1995)
- M.S. Mangir, JJ. Ottusch, D.C. Jones, and D.A. Rockwell. "Time-Resolved Measurements of SBS Phase Jumps During an Individual Laser Pulse," Ph. Rev. Lett. ££, 1702-1705, (1992).
- B. Ya. Zel'dovich, V. A. Krovoshchekov, A. V. Mamaev, M. A. Melnikov, N. F. Pilipetski and V. V. Skhunov, Sov. Ph. Jetp Lett. 43_, 17, (1986). Digest Series Vol. 17, 302 (1997).
- W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786 (1996).
- G. Kazansky, A.R. Smith, P.St.J. Russell, G.M. Yang, and G.M. Sessler-, "Therrnally poled silica glass: Laser-induced pressure pulse probe of charge-distribution," Appl. Phys. Lett. 68, 269 (1996).
- P.G. Kazansky, A. Kamal and P.St.J. Russell, "Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation," Optics Lett. 18, 1141 (1993).
- A. Agarwal and M. Tomozawa, "Correlation of silica glass properties with the infrared spectra," J. Non- Cry st. Solids 209, 166 (1997).
- B. Lesche, F.C. Garcia, E.N. Hering, W. Margulis, I.C.S. Carvalho, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172 (1997).
- T.G. Alley, R.A. Myers, and S.R.J. Brueck, "An ion exchange model for extended-duration thermal poling of bulk fused silica,"in: Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, OSA Technical Digest Series Vol. 17, 293 (1997).
- WD1 (Invited) 3:30pm -4:00pm Applications of Terahertz Imaging
- Daniel M. Mittleman, Ramesh Neelamani, and Richard G. Baraniuk Rice University Electrical and Computer Engineering Dept., MS366 6100 Main St., Houston, TX 77005 Phone: (713) 285-5452 FAX: (713) 524-5237 E-mail: [email protected] Martin C. Nuss Bell Laboratories -Lucent Technologies Room 4B-429, 101 Crawfords Corner Rd., Holmdel NJ 07733
- Hu B -B. and Nuss, M. C, "Imaging with terahertz waves," Opt, Lett., 20, 1716 (1995).
- Mittleman, D. M., Jacobsen, R. H., and Nuss, M. C, "T-ray imaging," IEEE J. Sei. Top. Quant. Elec, 2, 679 (1996).
- Jacobsen, R. H., Mittleman, D. M., and Nuss, M. C, "Chemical recognition of gases and gas mixtures using terahertz waveforms," Opt. Lett., 21, 2011 (1996).
- Mittleman, D. M., Hunsche, S., Boivin, L., and Nuss, M. C, "T-ray tomography," Opt. Lett., 22, 904 (1997).
- Arbore, M. A., Fejer, M. M., Fermann, M. E., Haribaran, A., Galvanauskas, A., and Harter, D., "Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate," Opt. Lett., 22, 13 (1997)
- Nelson, L. E., Fleischer, S. B., Lenz, G., and Ippen, E. P., "Efficient frequency doubling of a femtosecond fiber laser," Opt. Lett, 21, 1759(1996).
- Keil, U. D., and Dykaar, D. R., "Ultrafast pulse generation in photoconductive switches," IEEE J. Quant. Elec., 32, 1664 (1996).
- Howells, S. C, and Schlie, L. A., "Temperature dependence of terahertz pulses produced by difference- frequency mixing in InSb," Appl. Phys. Lett, 67, 3688 (1995).
- Sekine, N, Hirakawa, K, Sogawa, F., Arakawa, Y., Usami, N, Shiraki, Y., and Katoda, T., "Ultrashort lifetime photocarriers in Ge thin films," Appl. Phys. Lett., 68, 3419 (1996).
- Takahashi, R., Kawamura, Y., and Iwamura, H., "Ultrafast 1.55 mm all-optical switching using low- temperature-grown multiple quantum wells," Appl. Phys. Lett., 68, 153 (1996).
- Donoho, D., "De-noising by soft-thresholding," IEEE Trans. Info. Theory, 41, 613 (1995).
- Ghael, S., Sayeed, A. M., and Baraniuk, R. G., "Improved wavelet denoising via empirical Wiener filtering," Proc. SPIE, San Diego, July 1997. "
- Yu, C. X., Namiki, S., and Haus, H. A., "Noise of the stretched-pulse fiber laser: Part II -Experiments, IEEE J. Quant. Elec, 33, 660 (1997).
- B.H. Kölner and D.M. Bloom, IEEE J. Quantum Electron., QE-22,69 (1986).
- J.A. Valdmanis and G.A. Mourou, IEEE J. Quantum Electron., QE-22,79 (1986).
- Q. Wu and X.-C. Zhang, Appl. Phys. Lett., 67, 2523 (1995).
- A. Nahata, D.H. Auston, T.F. Heinz, and C.J. Wu, Appl. Phys. Lett., 68, 150 (1996).
- P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding and H. Helm, Phys. Rev. E, 53, pp. R3052 -R3054, 1996.
- J. A. Valdmanis, Proceeding of Ultrafast Phenomena V, Springer-Verlag, 82 (1986);
- Galvanauskas, J.A. Tellefsen, Jr., A. Krotkus, M. Oberg, and B. Broberg, Appl. Phys. Lett., 60, 145 (1992).
- For example, D. H. Auston, Appl. Phys. Lett. 43, 713 (1983).
- For example, I. Brener, D. Dykaar, A. Frommer, L. N. Pfeiffer, J. Lopata, J. Wynn, and K. West, and M. C. Nuss, Opt. Lett. 21, 1924 (1996).
- D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).
- X. -C. Zhang, Y. Lin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, Appl. Phys. Lett. 62, 2003 (1993).
- N. Sarukura, Z. Liu, Y.Segawa, S. Koshihara, K. Shimoyama, Y. Kondo, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, 22nd International Conference on the physics of semiconductors, 1237, (1994).
- X. -C. Zhang and D. H. Auston, J. Appl. Phys. 71, 326 (1992).
- S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. J. Levi, Phys. Rev. Lett. 68, 102 (1992).
- G.I. Stegeman, D.J. Hagan, and L. Tomer, Optical and Quantum Elecronics 28,1691 (1996).
- J. Zyss, J.F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
- G. P. Banfi, P. K.Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, "Frequency shifting through cascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal", to appear in Opt. Lett.
- H. Tan, G.P. Banfi, and A. Tomaselli, Appl. Phys. Lett. 63, 2472 (1993).
- S. Nitti, H.M. Tan, G.P. Banfi and V. Degiorgio, Opt. Comm. 106, 263 (1994).
- P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, (Wiley- Interscience, New York 1991).
- J. L. Bredas, C. Adant, P. Tackx and A. Persoons, Chem. Rev.94 (1994) 243.
- L C Moura, A M. Simas and J. Miller, Chem. Phys. Lett. 257 (1996) 639.
- A. G. Bezerra-Jr, A S. L. Gomes, C. P. de Melo and CidB. de Araüjo, Chem. Phys. Lett. 276 (1997) 445.
- Jacques E. Ludman, et. al., "Very thick holographic nonspatial filtering of laser beams," Opt. Eng. 36(6), 1700-1705 (1997).
- Kevin Curtis, Allen Pu, and Demetri Psaltis, "A method for holographic storage using peristrophic multiplexing," Opt. Lett. 19(13), 993-994 (1994). ThA6 9:30am -9:45am
- K. Minoshima, M. Taiji, K. Misawa, and T. Kobayashi, Chem. Phys. Lett. 218, 67(1994).
- J. Knoester and F.C. Spano, Phys. Rev. Lett. 74, 2780 (1995).
- T. Kobayashi and K. Misawa, J. Lumin. 72, 38 (1997).
- V. Sundström, T. Gillbro, R.A. Gadonas, and A. Piskarskas, J. Ghem. Phys. 89, 2754 (1988).
- K. Misawa and T. Kobayashi, Opt. Lett. 20,1550 (1995).
- Aranda, F. J., D. V. G. L. N. Rao, C. L. Wong, P. Zhou, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach. 1995. Nonlinear optical interactions in bacteriorhodopsin using Z-scan. Opt. Rev. ( 1995 ). 2:204-206.
- Becher, B. M. and J. Y. Cassim. 1975. Improved isolation procedures for the purple membane of Halobacterium Halobium. Prep. Biochem. 5:161-178.
- Birge, R. R., P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang. 1990. Nonlinear optical properties of bacteriorhodopsin : assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy. Mol. Cryst. Liq. Cryst. 189:107-122.
- Chen, Z., M. Sheves, A. Lewis, and O. Bouevitch. 1994. A comparison of the second harmonic generation from light-adapted, dark-adapted, blue, and acid purple membrane. Biophys. J. 67:1155-1160. Clays, K., E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J. L. Bredas. 1993. Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution. Science (Washington. 262:1419-1422.
- Downie, J. D. 1995. Optical logarithmic transformation of speckle images with bacteriorhodopsin films. Opt. Lett. 20:201-203.
- Henderson, R., J. M. Baldwin, T. A. Ceska, F. Zemlin, E. Beckmann, and K. H. Downing. 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213:899-929.
- Landau, E. M., G. Rummel, J. P. Rosenbusch, and S. W. Cowan-Jacob. 1997. Crystallization of a Polar Protein and Small Molecules from the Aqueous Compartment of Lipidic Cubic Phases. J. Phys. Chem. B. 101:1935-1937.
- Lanyi, J. K. 1993. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Biochim. Biophys. Acta. 1183:241-261.
- Lindvold, L. R. and P. S. Ramanujam. 1995. The use of bacteriorhodopsin in optical processing: A review. J. Sei. Ind. Res. 54:55-66.
- Marder, S. R., L T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Skindhoj. 1994. Large First Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond Length Alternation and Aromaticity. Science. 263:511-514.
- Oesterhelt, D., C. Braeuchle, and N. Hampp. 1991. Bacteriorhodopsin : a biological material for information processing. Q. Rev. Biophys. 24:425-478.
- Schmidt, P. K. and G. W. Rayfield. 1994. Hyper-Rayleigh light scattering from an aqueous suspension of purple membrane. Applied Optics. 33:4286-4292.
- P.E.Barnsley, G.E.Wickens, H.J.Wickes, and D.M.Spirit, "All-optical clock recovery from a 5GB/s RZ data signal using a self-pulsating 1.56um laser diode," IEEE Photonics Tech. Lett., Vol. 3, No. 10, pp. 942-945, 1991.
- G.Farrell, P.Phelan, J.Hegarty and J.Shields "All-optical timing extraction with frequency division using a twin section laser diode," IEEE Photonics Tech. Lett., Vol. 5, No. 6, pp. 718- 721, 1993.
- M.Yamada, "A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers," IEEE Journal of Quantum Electron., Vol. 29, No. 5, pp. 1330-1336, 1993.
- A.Egan, M.Harley-Stead, P.Rees, S.Lynch, P.McEvoy, J.O'Gorman and J.Hegarty, "All- Optical Synchronization Of Self-Pulsating Laser Diodes", Appl. Phys. Lett. Vol.68, No.25, pp3534-3536, 1996.
- A.Egan, M.Harley-Stead, P.Rees, S.Lynch, J.O'Gorman and J.Hegarty, "An experimental and theoretical analysis of jitter in self-pulsating lasers synchronised to periodic electrical signals", JEE Photonics Tech. Lett., Vol. 8, No. 6,, pp. 758-760, 1996.
- D.Lenstra, B.H.Verbeek, and A.J.den Boef, "Coherence collapse in single mode semiconductor lasers due to feedback," IEEE J. Quant. Elec, QE-21, 674-679, (1985).
- P. Besnard, B. Meziane, and G.M.Stephan "Feedback phenomena in a semiconduc- tor laser induced by distant reflectors," IEEE J. Quant. Elec, QE-29, 1271-1284, (1993).
- M.Le Berre, E.Ressayre, A.Tallet, and H.M.Gibbs, "High-dimension chaotic at- tractors of a nonlinear ring cavity," Phys. Rev. Lett., 56, 272-277, (1983).
- R.Lang and K.Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quant. Elec, QE-16, 347-355, (1980).
- P.M.Alsing, V.Kovanis, A.Gavrielides, and T.Erneux, "Lang and Kobayashi phase equation," Phys. Rev. A., 53, 4429-4434, (1996).
- P.S.Spencer and K.A.Shore "Multi-mode iterative analysis of the dynamic and noise properties of laser diodes subject to optical feedback," J. Euro. Opt. Soc B, 9, 819-830, (1997).
- G.H.M. van Tartwijk, A.M.Levine and D.Lenstra, "Sisyphus effect in semiconduc- tor laser with optical feedback," IEEE J. Sei. Topics Quant. Elec, 1, 466-472, (1995).
- G.Huyet, S.Hegarty, M.Giudici, B.De Bruyn and J.G.McInerney, " Statistical properties of the dynamics of semiconductor lasers with optical feedback," Eu- rophys. Lett., 40, 619-624, (1997).
- I.Fischer, G.H.M. van Tartwijk, A.M.Levine, W.Elsasser, E.Gobel, and D.Lenstra, "Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers," Phys. Rev. Lett., 76, 220-223, (1996).
- A.T.Ryan, G.P.Agrawal, G.R.Gray, and E.C.Gage "Optical-Feedback-Induced Chaos and its control in multimode semiconductor lasers," IEEE J. Quant. Elec, QE-30, 668-679, (1994).
- M.Homar, J.V.Moloney and M. San Miguel, "Travelling wave model of a multi- mode Fabry-Perot laser in free running and external cavity configuration," IEEE J. Quant. Elec, QE-32, 553-566, (1996)
- S.E.Hodge, M.Munroe, J.Cooper, and M.G.Raymer, "Multimode laser model with coupled cavities and quantum noise," J. Opt. Soc. Am. B, 14, 191-199, (1997).
- H.Haug and S.W.Koch, "Quantum theory of the optical and electrical properties of semiconductors" World Scientific:Singapore, (1990).
- G. P. Agrawal. Non Linear Fiber Optics. Optics and photonics series. Aca- demic Press Inc., second edition, 1995.
- M.Y. Hong, Y.H. Chang, A. Dienes, J.P. Heritage, and P.J. Delfyett. Subpi- cosecond Pulse Amplification in Semiconductor Laser Amplifiers: Theory and Experiment. IEEE Journal of Quantum Electronics, 30(4):1122-1131, 1994.
- R.H. Hardin and F.D. Tappert. Application of the Split-Step Fourier Method to the Numerical Solution of Nonlinear and Variable Coefficient Wave Equa- tions. SIAM Rev. Chronicle, 15:423, 1973.
- G. Kaiser. A Friendly Guide to Wavelets. Parkhäuser, 1994.
- G. Strang and T.Q. Nguyen. Wavelets and Filter Banks. Wellesley Cambridge Press, 1996.
- G. Beylkin, R. Coifman, and V. Rokhlin. Fast Wavelet Transforms and Numerical Analysis I. Comm. on Pure and Applied Mathematics, XLIV:141- 183, 1991.
- I. Pierce and K.A. Shore. Modelling Pulse Propagation in Semiconductor Optical Amlpifiers using Wavelets. To appear in IEE Proc. Optoelectronics, February 1998.
- A.H. Paxton and G. C. Dente, J. Appl. Phys. 70,2921 (1991).
- H. Adachihara, O. Hess, E. Abraham, P. Ru and J.V. Moloney, J. Opt. Soc. Am B. 10, 658 (1993).
- J. R. Maricante and G. P. Agrawal, IEEE J. Quantum Electron. 32, 590 (1996).
- J. R. Maricante and G. P. Agrawal, Appl. Phys. Lett. 69, 593 (1996).
- J. R. Maricante and G. P. Agrawal, IEEE J. Quantum Electron. 33, 1174 (1997).
- P. Coullet, L. Gill, and F. Rocca, Opt. Commun., 73 (1989) 403.
- HJ. Eichler, J. Kunde, B. Liu, Opt. Comm. 139, 327-334 (1997)
- H.J. Eichler, J. Kunde, B. Liu, Opt. Lett., Vol. 22, No. 8, 495-497 (1997)
- H.J. Eichler, J. Kunde, B. Liu, CLEO/Pacific Rinf 97, Technical Digest, 114-115 (1997)
- M.J. Damzen, H. Hutchinson, J. Quantum Electron. QE-19, 7-14 (1983) ThC6 12:30pm -2:30pm Demonstration of all-optical switching in a GalnAsP distributed feedback waveguide K. Nakatsuhara, T. Mizumoto, E. Takahashi, H. Sainul and Y. Saka, Department of Physical Electronics, Tokyo Institute of Technology 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan Phone : +81(3)5734-2578 Fax : +81(3)5734-2948 E-mail: [email protected] B.J.MaandY.Nakano Department of Electronic Engineering, University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113, Japan
- P. Li Kam Wa, P. N. Robson, J. P. R. David, G. Hill, P. Mistry, M. A. Pate, J. S. Roberts, Electronics Letters Vol., 22, No. 21, pp. 1129-1130, (1986).
- C. Coriasso, D. Campi, C. Cacciatore, L. Faustini, G. Leo, F. Buscaglia, C. Rigo and A. Stano, "Butterfly bistability in an InGaAs/InP multiple-quantum well waveguide with distributed feedback," Appl. Phys. Lett., Vol. 67, No. 5, pp. 585-587, (1995).
- K. Nakatsuhara, T. Mizumoto, R. Munakata, Y. Kigure and Y. Naito, IEEE Photon. Tech. Lett., Vol. 10, No. 1, pp.78-80, (1998).
- K. Nakatsuhara, T. Mizumoto, R. Munakata, Y. Kigure and Y. Naito, OECC'96(Optoelectronics and communications conference, July, 1996, Chiba, Japan), 18P-13
- C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. Van Stryland, Physical Review B, Vol. 50, No. 24, pp. 18073-18082, (1994). ThC7 12:30pm -2:30pm
- M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S.L. Korableva, OSA proceedings on Advanced Solid-State Lasers, A. A. Pinto and T.Y. Fan, eds. (OSA 1993), vol. 15,195; M. A. Dubinskii, V. V. Semashko, A. K. Naumov, et al. -J. Mod. Opt, 40,1, (1993).
- M. A. Dubinskii, R. Y. Abdulsabirov, S. L. Korableva, A. K. Naumov, and V. V. Semashko, IQEC'92, Paper FrL2;
- M. A. Dubinskii, V. V. Semashko, A. K. Naumov, et al. -Laser Phys. 4,480, (1994).
- Z. Liu, H. Ohtake, S. Izumida, T. Yamanaka, N. Sarukura, M. A. Dubinskii, R. Y. Abdulsabirov, and S. L. Korableva, submitted to CLEO (OSA) '98.
- N. Sarukura, Z. Liu, H. Ohtake, Y. Segawa, M. A. Dubinskii, R. Y. Abdulsabirov, S. L. Korableva, A. K. Naumov, and V. V. Semashko, Opt. Lett. 22, 994 (1997).
- Z. Liu, N. Sarukura, M. A. Dubinskii, V. V. Semashko, A. K. Naumov, S. L. Korableva, and R. Y Abdulsabirov, Jpn. J. Appl. Phys. 37, L36 (1998).
- D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, Opt. Lett. 22, 1497 (1997).
- D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, Opt. Lett. 20, 1649 (1995).
- L. Noirie, P. Bidakovic, and J. A. Levenson, J. Opt. Soc. Am. B 14, 1 (1997).
- 'T. Suhara et al., IEEE J. Quantum Electron. 32, 690 (1996).
- M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1991).
- J. Maeda and K. Kikuchi, J. Opt. Soc. Am. B 14, 481 (1997).
- Z. Y. Ou, Phys. Rev. A 49, 2106 (1994).
- F.A. Katsriku, B.M.A. Rahman and K.T.V. Grattan, "Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method", IEEE J. Quantum Electron., QE-33, pp. 1727-1733, Oct. 1997.
- A.F. Harvey, Coherent Light. London: Wiley,1970.
- H.M. Masoudi and J.M. Arnold, "Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method", IEEE J. Quantum Electron., QE-32, pp. 2107-2113, Dec. 1995.
- B.M.A. Rahman and J.B. Davies, "Finite-element solution of integrated optical waveguides", J. Lightwave Technol, LT-2, pp. 682-688, Oct. 1984.
- F.A. Katsriku, B.M.A. Rahman and K.T.V. Grattan, "Finite element analysis of diffused anisotropic optical waveguides", J. Lightwave Technol, LT-14, pp. 780-786, May 1996.
- D.W. Jenkins, "Optical constants of Al x G i . x As", /. Appl. Phys. 68 (4), Aug. 1990 pp. 1848-1853.
- K.Hayata and M. Koshiba, "Numerical study of guided-wave sum-frequency generation through second-order nonlinear parametric processes", J.Opt. Soc. Am., B vol. 8, pp. 449-458, Feb. 1991.
- H.F. Taylor, Proceed. IEEE, vol. 75, no. 11, pp. 1524-34, Nov. 1987; P.E. Pace et al., Opt. Engirt., vol. 33, no. 8, pp. 2639-45, Aug. 1994; B.L. Shoop et al., Appl. Opt, vol 31. no. 26, pp. 5654-60, Sept 1992.
- C. M. Verber, USA Patent, no. 4,712,089, Dec. 1987.
- G.M. Carter et al., Appl. Phys. Lett., vol. 47, no. 5, pp.457-9, Sept. 1985; M. Thakur et al., Appl. Phys. Lett., vol. 56, no. 12, pp. 1187-8, Mar. 1990;
- B.L. Lawrence et al., El. Lett-, vol. 30, no. 5, pp. 447-8, Mar. 1994; W. Krug, et al., J. Opt. Soc. Am. B, vol. 6, no. 4, pp. 726-8, April 1989; Polydiacetylenefor lightwave and integrated optics: technology and applications, L. A Homak Ed., M. Dekker Inc., New York, 1992, pp. 664-80.
- J.V. Moloney et al., Opt. Lett., vol. 11, no.5, pp. 315-7, May 1986.
- B. Hermansson et al., Opt. Quant. El, vol. 16, pp. 525-534, Nov. 1984; T.R. Taha, J. Comp. Phys., vol. 55, pp. 203-30, 1984.
- J.E.Millerd, NJ.
- Brock, M.S.Brown, P.DeBarber, Opt. Lett., 20, 626, 1995.
- Z.Chen, ALewis, H.Takei, I.Nebenzahl, Appl, Opt., 30, 5188, 1991.
- Yu.O.Barmenkov, V Zosimov, N.M.Kozhevnikov, M.Yu.Lipovskaya, L.M.Lyamshev, Opt. Spectrosc. (USSR), 64, 792, 1988.
- TJaaskelainen, V.P.Leppanen, S.Parkkinen, J.P.S.Parkkinen, A.Khodonov, Optical Materials, 6, 339, 1996.
- S.Yu.Zaitsev, N.M.Kozhevnikov, Yu.O.Barmenkov, M.Yu.Lipovskaya, Photochem. Photobiol., 55, 851, 1992.
- AB.Druzhko, S.K.Chamorovski, BioSystems, 35, 133, 1995. ThC12 12:30pm -2:30pm All-fiber optical switch based on Raman scattering AN.Starodumov, Yu.O.Barmenkov, A.Martinez, I.Torres Centra de Investigaciones en Optica, 37150
- Leon, Gto, Mexico Tel: (52)-(47) -17-5823, Fax: 52 -47 -17-5000, E-mail: anstartgifoton.cio.mx
- NJ.Doran, D.Wood, Opt.Lett, 13, 56 (1988).
- M.N.Islam, Ultrafast Fiber Switching Devices and Systems (Cambridge University Press, Cambridge, UK, 1992).
- A.N.Starodumov, Yu.Barmenkov, A.Martinez, I.Torres, L.Zenteno, Opt. Lett. 23, 1998 (to be published).
- W. J. Firth et al, Europhys. Lett. 26 (1994) 521.
- G. D'Alessandro et al Phys. Rev. A46 (1992) 537.
- E. Pampaloni et al, Europhys. Lett. 24 (1993) 647.
- M. Orenstein et al, Appl. Phys. Lett. 56 (1990) 2384.
- C Nuckolls, T.J. Katz, L. Castellanos, J. Am. Chem. Soc. 118, 3767 (1996)
- A.J. Lovinger, C. Nuckolls, T.J. Katz, J. Am. Chem. Soc, in press
- J.J. Maki, M. Kauranen, A. Persoons, Phys. Rev. B 51,1425 (1995)
- W.W. Chow, S.W. Koch and M. Sargent, Semiconductor Laser Physics, Springer, Heidelberg, Berlin, (1994).
- Goorjian, P. M. and Agrawal, G. P.: "Computational Modeling of Ultrashort Op- tical Pulse Propagation in Nonlinear Optical Materials," Paper NME31, Nonlinear Optics Topical Meeting, Maui, HI, July 8-12, 1996. Also, Nonlinear Optics: Ma- terials, Fundamentals, and Applications, Vol. 11 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 132-133.
- Goorjian, Peter M., and Agrawal, Govind P., "Computational Modeling of Ul- trafast Optical Pulse Propagation in Semiconductor Materials," Paper QThE9, Quantum Optoelectronics, Spring Topical Meeting, Sponsored by the Optical So- ciety of America (OSA), at Hyatt Lake Tahoe, Nevada, on March 17-21, 1997.
- Goorjian, Peter M., and Agrawal, Govind P., "Maxwell-Bloch Equations Modeling of Ultrashort Optical Pulse Propagation in Semiconductor Materials," Paper WB2, Optical Society of America (OSA) 1997 Annual Meeting, Long Beach, CA, October 12-17, 1997.
- C.Z. Ning, R.A. Indik and J.V. Moloney, "Effective Bloch-equations for semicon- ductor lasers and amplifiers," IEEE J. Quan. Electron. 33, 1543 (1997).
- C.Z. Ning, J. V. Moloney, R.A. Indik, "A first-principles fully space-time resolved model of a semiconductor laser", Quantum Semiclass. Opt., 9, 681(1997)
- J.V. Moloney, R.A. Indik and C.Z. Ning, "Full space-time simulation for high brightness semiconductor lasers," IEEE Photon. Tech. Lett., 9, 731(1997);
- A. Egan, C.Z. Ning, J.V. Moloney, R.A. Indik, M.W. Wright, D.J. Bossert and J.G. Mclnerney, "Dynamic Instabilities in MFA-MOPA Semiconductor Lasers," IEEE J. Quant. Electr. 34, 166, (1998)
- C.Z. Ning, S. Bischoff, S.W. Koch, G. K. Harkness, J.V. Moloney, and W.W. Chow "Microscopic Modeling of VCSELs: Many-body interaction, plasma heating, and transverse dynamics", to appear in Optical Engineering, April, 1998 .
- J.Y. Law, G.H.M. van Tartwijk, and G. P. Agrawal, " Effects of transverse-mode competition on the injection dynamics of vertical-cavity surface-emitting lasers", Quantum Semiclass. Opt., 9, 737 (1997)
- J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
- M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
- Y. J. Ding and J. B. Khurgin, Opt. Lett. 21, 1445 (1996).
- J. U. Rang, Y. J. Ding, W. R. Burns, and J. S. Melinger, Opt. Lett. 22, 862 (1997).
- Code 5672, Naval Research Laboratory, Washington, DC 20375. department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218. References
- R. de la Fuente, A. Barthelemy, and C. Froehly, OptLett. 16,793,1991
- M. Shalaby and A. Barthelemy, Opt. Commun. 94, 341,1992.
- R. McLeod, K. Wagner, and S. Blair, Phys. Rev. A 52, 3254,1995.
- P. A. Tick, Phys. Chem. Glasses, 25,6,1984.
- W. R. Tompkin, R.W. Boyd, D.W. Hall, and P.A.Tick, J. Opt. Soc. Am., B 4,1030,1987.
- K.A. Stankov, G. Marowsky, Appl. Phys. B 61, pp. 213-215, 1995
- J.T. Murray, R.C. Powell, N. Peyghambarian, J. of Luminescence, 66&67, pp. 89-93,1996
- C. He, T. H. Chyba, Optics Communications 135, pp. 273-278, 1997
- P.G. Zverev, J.T. Murray, R.C. Powell, R.J. Reeves, and T.T. Basiev, Optics Communications 97, pp. 59-64, 1993
- J. Findeisen, HJ. Eichler, A.A. Kaminskii, to be published
- P. G. Zverev, T.T. Basiev, W. Jia, and H. Liu, OSA TOPS, Advanced Solid State Lasers, pp. 554- 559, 1996
- ThC21 12:30pm -2:30pm Electrostatic Effects in the Dynamics of Wall Defects in Liquid Crystal Optical Devices Nagendra Singh and W. C. Leung Department of Electrical and Computer Engineering University of Alabama in Huntsville, Huntsville, AL 35899 Phone: (205)890-6678 Fax: (205)890-6803 e-mail: [email protected]
- R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, and M Friends, Optics Letters, Optical Society of America, Vol. 19, No. 9, pp. 670-672, May 1994.
- Lui Lam and J. Prost, Solitons in Liquid Crystals, Spring Verlag, New York, 1992.
- C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulations, McGraw-Hill, New York, 1985;
- G. Haas, H. Wohlen, M W. Fritsch, and D. A. Mynski, Proc. SID, 81,301,1990.
- W. C. Leung, Feasibility of using particle-in-cell technique for modeling liquid crystal devices, Ph.D. Thesis, University of Alabama in Huntsville, 1997.
- P. G. DeGennes and Prost, The physics of Liquid Crystals, Clarendon Press, Oxford, UK, 1993. ThC22 12:30pm -2:30pm Summary of NLO'98
- Scattering noise reduction in phase conjugators via photo-induced density redistribution in atomic vapors References
- P.Yeh, "Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research," Appl. Opt. 26, 602-604 (1987).
- D. Grischkoesky and J. A. Armstrong, "Self-defocusing of light by adiabatic following in rubidium vapor," Phys. Rev. A 6, 1566-1570 (1972).
- F. Shimizu, "Frequency broadening in liquids by a short light pulse," Phys. Rev. Lett. 19, 1097-1100 (1967).
- R. L. Abrams and R. C. Lind, "Degenerate four-wave mixing in absorbing media," Opt. Lett. 2, 94-96 (1978).
- R. Saxena, I. McMichael, and P.Yeh, "Dynamics of refractive-index changes and two-beam coupling in resonant media," Appl. Phys. B 51, 243-253 (1990).
- T. Y. Chang, "Fast self-induced refractive index changes in optical media: a survey," Opt. Eng. 20, 220-232 (1981).
- A.M.Cox, R.D.Blackburm, D.P.West and T.A.King. F.A.Wade and D.A.Leigh. Appl.Phys.Lett. 68(20),13 May(1996)2081.
- K.Meerholz, B.L.Volodin, Sandalphon, B.Kippelen and N.Peyghambarian, Nature 371 (1994) 497.
- Yiping Cui, Bogdan Swedek, Ning Chen, Kie-Soo Kim, and Paras N.Prasad, J. Phys. Chem. B. 101 (1997) 3530.
- Ryszard Burzynski, Yue Zhang, Saswait Ghosal and Martin K.Casstevens. J. Appl. Phys. 78 (12) (1995) 6903.
- Lei Geng, Johm C.Wright. Chemical Physics Letter. 249(1996)105.
- S Couris, E Koudoumas, F Dong and S Leach. J. Phys. B. 29(1996)5033.
- Qihuang Gong, Yuxing Sun, Zongju Xia, Zou Y.H., Zhennan Gu, Xihuang Zhou and Di Qiang. J. Appl. Phys., 71(1992)3025.
- Houjin Huang, Gang Gu, Shihe Yang, Jishi Fu, Ping Yu, George K. L. Wong, and Youwi Du, Chem. Phys. Lett. 272(1997)427.
- F. Kajzar, C. Taliani, R. Danieli, S. Rossini and R. Zamboni, Chem. Phys. Lett. 217(1994)418.
- S. J. A. van Gisbergen, J. G. Snijders and E. J. Baerends. Phys. Rev. Lett. 78 (1997)3097.
- Lascola-R, Wright-JC. Chemical Physics Letter. 269(1997)79.
- T. Gotoh, T.Kondoh and K. Egawa, J. Opt. Soc. Am. B 6(1989)703
- Q. Gong, Z. Xia, Y. Zou, X. Meng, L. Wei and F. Li, Appl. Phys. Lett. 59(1991)381
- S. Park, T. Wada and H. Sasabe, Mol. Cryst. Liq. Cryst. 227(1993)151
- References
- For example, see P. Günter and J. P. Huignard, eds, Photorefractive Materials and Their Applications I and II, (Springer-Verlag, Berlin, 1989).
- K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, Nature (London) 371, 497 (1994).
- Y. Zhang, Y. Cui, P. N. Prasad, Phys. Rev. B 46, 9900 (1992).
- S. M. Silence, C. A. Walsh, J. C. Scott, W. E. Moerner, Appl. Phys. Lett. 61,2967 (1992).
- Y. Cui, Y. Zhang, P. N. Prasad, Appl. Phys. Lett, 61, 2132 (1992).
- S. M. Silence, F. Hache, M. C. J. M. Donckers, C. A. Walsh, D. M. Burland, G. C. Bjorklund, R. J. Twieg, W. E. Moerner, Proc. SPIE 1852, 253 (1993).
- Y.Wang, Nature 356, 585(1992).
- L. Onsager, Phys. Rev. 54, 554 (1938).
- C. L. Braun, J. Chem. Phys. 80, 4157 (1984).
- J. S. Schildkraut, Appl. Phys. Lett. 58, 340 (1991).
- K. Tamura, et al., Appl. Phys. Lett. 60, 1803 (1992).
- T. E. Goliber, J. H. Perlstein, J. Chem. Phys. 80, 4162 (1984).
- S. Ducharme, J. Feinberg, J. Appl. Phys. 56, 839 (1984).
- Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens, R. Burzynski, J. Appl. Phys. 76, 671 (1994).
- F. Wang, Z. Chen, Z. Huang. Q. Gong, Y. Chen. H. Chen, "High photorefractive performance of low glass transition temperature polymeric composite doped with bifunctional chromophore," submitted to J. Phys. B.
- P. M. Borsenberger, A. I. Ateya, J. Appl. Phys. 49, 4035 (1978).
- References [1] see e.g. Y. Yamamoto and R. Slusher, Phys. Today 46, No. 6, 66 (1993).
- E. Giacobino, talk given at 1st. Workshop on "Microlaser and cavity QED", Les Houches, France, 21-25 April 1997.
- S. Mancini, P. Tombesi and E. Giacobino, in preparation.
- H. M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548 (1993).
- P. Goetsch, P. Tombesi and D. Vitali, Phys. Rev. A, 54, 4519 (1996).
- P. Tombesi and D. Vitali, Phys. Rev. A 51, 4913 (1995).
- A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, Appl. Phys. Lett, 67, 2907 (1995).
- A. Bonvalet, J. Nagle, V. Berger, A. Migus, J. L. Martin, and M. Joffre, Phys. Rev. Lett, 76, 4392 (1996).
- M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, Opt. Lett., 21,964 (1996).
- Q. Wu and X.-C. Zhang, Appl. Phys. Lett., 70, 1784, (1997).
- Q. Wu and X.-C. Zhang, Appl. Phys. Lett., 71, 1285, (1997).
- Q. Wu and X.-C. Zhang, IEEEJ. Selected Topics in Quantum Electron. , 2, 693, (1996).
- Pochi Yeh, "Introduction to Photorefractive Nonlinear Optics", (Wiley, New York, 1993)
- Xianmin Yi, Shiuan Huei Lin, and Pochi Yeh, Ken Yuh Hsu, Opt. Lett. 21,1123(1996)
- Xianmin Yi, Changxi Yang, Pochi Yeh, Shiuan-Huei Lin and Ken Yuh Hsu, J. Opt. Soc. Am. B14,1396(1997)
- N.V. Bogodaev, L.I. Ivleva, A.S. Korshunov, N.M. Plolzkov and V.V. Shkunov, J. Opt. Soc. Am. BIO, 2287(1993)
- Mark Cronin-Golomb, Hongzhi Kong and Wieslaw Krolikowski, J. Opt. Soc. Am. B9, 1698(1992)
- Hongzhi Kong, Cunkai Wu and Mark Cronin-Golomb, Opt. Lett. 16,1183(1991)
- Mark T. Gruneisen, Edward D. Seeberger, John F. Mileski and Karl Koch, Opt. Lett., 16, 597(1991)
- Q.B. He and P. Yeh, Appl. Phys. B60,47(1995)
- S.D.L. Cruz, S. MacCormack, J. Feinberg, Q. B. He, H.K. Liu and P. Yeh, J. Opt. Soc. Am., B12, 1363(1995)
- G. Lera and M. Nieto-Vesperinas, Phys. Rev. A 41,6400(1990)
- P. Yeh, Appl. Opt. 26, 602(1987) References
- S.R. Marder, J.W. Perry, and W.P. Schaeffer, Science 245 , 626-628 (1989).
- R. Spreiter, C. Bosshard, F. Pan and P. Günter, Opt. Lett. 22,564 (1997).
- K. Sutter, J. Hulliger, and P. Günter, Solid State Commun. 74 (8), 867-870 (1990).
- S. Follonier, C. Bosshard, F. Pan and P. Günter, Opt. Lett. 21, 1655 (1996). ThD4 8:15pm-8:30pm Photorefractive Diffusion-Driven Self-Focusing and Self- Trapping in Near-Transition Paraelectric Crystals Bruno Crosignani, Eugenio DelRe and Paolo Di Porto-Universitä degli Studi dell'Aquila, Dipartimento di Fisica, L 'Aquila, Italy, andINFM, Unita di Roma I, Rome, Italy Mario Tamburrmi-Fondazione Ugo Bordoni, Rome, Italy Antonio Degasperis-Universita degli di Roma "La Sapienza", Dipartimento di Fisica, Rome, Italy andlNFN, Sezione di Roma I, Rome, Italy Aharon Agranat-Hebrew University of Jerusalem, Department of Applied Physics, Israel Mordechai Segev-Princeton University, Department of Electrical Engineering and POEM, Princeton, USA return address : Bruno Crosignani, Universitä degli Studi di Roma "La Sapienza", Dipartimento di Fisica, Piazzale Aldo Moro 2, 00185
- Roma, Italy. Tel. +39649913469, fax. +3964463158.
- For an up-to-date bibliography see, e.g. B.Crosignani, P.Di Porto, A.Degasperis, M.Segev, and S.Trillo, J.Opt.Soc.Am.B 14, 3078 (1997).
- M.Segev and AAgranat, OptXett. 21, 1299(1997).
- E.DelRe, B.Crosignani, M.Tamburrini, M.Mitchell, M.Segev, E.Refaeli, AAgranat, OptXett. 23, 421 (1998).
- D.NChristodoulides and T.H.Coskun, OptXett. 21,1460(1996).
- G.A.Swartzlander Jr. and C.T.Law, "Optical Vortex Solitons Observed in Kerr Nonlinear Media", Phys. Rev. Lett. vol. 69, 2503 (1992).
- E.A. Kuznetsov and S.K. Turitsyn "Instability and collapse of solitons in media with a defocusing nonlinearity", Sov. Phys. JETP 67 (8), 1583 (1988).
- C.T. Law and G.A. Swartzlander, Jr, "Optical vortex solitons and the stability of dark soliton stripes", Opt. Lett. vol. 18, 586 (1993).
- The Optical Whistle: A Novel Transverse Oscillation in Nonlinear Optical Cavities Jack Boyce and Raymond Y. Chiao Department of Physics, University of California, Berkeley, California 94720 Voice: (510) 642-5620 Fax: (510) 642-5620
- I. Janossy and T. Kosa, Opt. Lett. 17, 1183-1992; W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, Nature 351, pp.49-50, 1991; A. G. Chen and D. J. Brady, Opt. Lett. 17, ppl231-1233, 1992
- E. V. Rudenko, A. V. Sukhov, "Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity," JETP 78, 6, pp. 875-882, 1994; I.
- C. Khoo, H. Li, Y. Liang, Opt. Lett. 19, pp. 1723-1725,1994. I.C. Khoo, IEEE J. Quant. Elect., 32, pp. 525-534,1996.
- I.C. Khoo, S. Slussarenko*. B. D. Guenther and W.V. Wood, Opt. Letts., 23, pp. 253- 255,1998.
- I. C. Khoo, " Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena" Wiley Interscience, NY [11/94].
- T. T. Shi and S. Chi, Opt. Lett., 15, 1123 (1990).
- L. Lefort and A. Barthelemy, Photonics Technology Letters, 9, 1364 (1997).
- D.B Ostrowsky and R. Reinich (Ed.), "Guided Wave Nonlinear Optics", (NATO ASI Series, Kluwer Academic Publishers, 1992).
- A. Hasegawa, "Optical Solitons in Fibers" (2 nd ed., Springer-Verlag, Berlin 1990).
- D. Anderson and M. Lisak, Physica Scripta. 33, 193 (1986).
- References Denk, W. (1994). 'Two-photon scanning photochemical microscopy: mapping ligand- gated ion channel distributions." Proc. Natl. Acad. Sei. (USA) 91: 6629-6633.
- Denk, W. (1996). 'Two-Photon Excitation in Functional Biological Imaging." J, Bipmed, Opt. 1(3): 296-304.
- Denk, W., Holt, J. R., Shepherd, G. M. G. and Corey, D. P. (1995). "Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links." Neuron 15: 1311-1321.
- Denk, W., Piston, D. W. and Webb, W. W. (1995). Two-photon molecular excitation in laser scanning microscopy, in, The Handbook of Confocal Microscopy. Pawley, J., eds, New York, Plenum. 2nd, 445-458.
- Denk, W., Strickler, J. H. and Webb, W. W. (1990). "Two-photon laser scanning fluorescence microscopy." Science 248: 73-76.
- Denk, W., Sugimori, M. and Llinas, R. (1995). "Two types of calcium response limited to single spines in cerebellar Purkinje cells." Proc. Natl. Acad. Sei. (USA) 92(18): 8279- 8282.
- Denk, W. and Svoboda, K. (1997). "Photon upmanship: why multiphoton imaging is more than a gimmick." Neuron 18: 351-357.
- Svoboda, K., Tank, D. W. and Denk, W. (1996). "Direct measurement of coupling between dendritic spines and shaft." Science 272(5262): 716-719.
- Yuste, R. and Denk, W. (1995). "Dendritic spines as basic functional units of neuronal integration." Maiurg 375(6533): 682-684. References:
- G. Burr, F. Mok, and D. Psaltis, Opt. Commun., v. 117, p.49 (1995),J. Heanue, M. Bashaw, and L. Hesselink, Science, v.265, p.749 (1994), R. M. Shelby, J. A. Hoffnage et al.,Opt. Lett, v.22, p. 1509 (1997), and references therein.
- AS.Dvornikov, P.M.Rentzepis. Opt. Lett, v.22, p.558 (1997), and references therein.
- N. I. Koroteev, S. A. Krikunov, S. A. Magnitskii et al., Opt. Lett., (1998) (submitted for publication).
- N.I.Koroteev, S.AMagnitskii, V.V.Shubin et al. Jpn. J. Appl. Phys. V. 36, p. 423 (1997).
- L.M. Wang, P.P. Ho, C. Liu, G. Zhang, R.R. Alfano, Science 253, 768 (1991)
- K.M. Yoo, QirongXing, R.R. Alfano, Opt. Letters 16, 1019 (1991)
- E.Lanz, F.Devaux, G.Le Tolguenec, H.Maillotte, in OSA TOPS on Adv. in Optical Imaging and Photon Migration, Vol. 2, ed. R.R. Alfano, J.G.Fujimoto, pp. 99-102, 1996
- H.J. van Staveren, C.J.M. Moes, J. van Marie, S.A. Prahl, M.J.C. van Gemert, Appl. Optics 30, 4507 (1991)
- K.M. Yoo, R.R. Alfano, Opt. Letters 15, 320 (1990) References
- J. A. Bardwell, N. Draper, and P. Schmuki, J. Appl. Phys. 79, 8761 (1996).
- S. Janz and J. A. Bardwell, in In Situ Process Diagnostics and Intelligent Materials Processing, Materials Research Society Symposia Proceedings (in press, 1998);
- S. Janz and J.A. Bardwell, in Quantum Electronics and Laser Science Conference, Vol. 12, 1997 OSA Technical Digest Series, 89 (Optical Society of America, Washington, D.C., 1997).
- O. A. Aktsipetrov, A. A. Fedyanin, J. I. Dadap, and M. C. Downer, Laser Physics 6, 1142 (1996).
- J. I. Dadap, X. F. Hu, M. H. Anderson, M. C. Downer, J. K. Lowell, and O. A. Aktsipetrov, Phys. Rev. B 53, R7607 (1996).
- J. L. Daschbach, P. R. Fischer, D. E. Gragson, D. Demarest, and G. L. Richmond, J. Phys. Chem. 99, 3240 (1995).
- P. R. Fischer, J. L. Daschbach, D. E. Gragson, and G L. Richmond, J. Vac. Sei. Technol. A 12,2617(1994).
- P. R. Fischer, J. L. Daschbach, and G. L. Richmond, Chem. Phys. Lett. 218,200 (1994). References: 1 K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980 (1991).
- K. Clays and A. Persoons, Rev. Sei. Instrum. 63, 3285 (1992).
- E. Hendrickx, C. Boutton, K. Clays, A. Persoons, S. van Es, T. Biemans and B. Meijer, Chem. Phys. Lett. 270, 241 (1997).
- C. Boutton, K. Clays, A. Persoons, T. Wada and H. Sasabe, Chem. Phys. Lett, accepted for publication, (1998).
- T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt and A. Persoons, J. Am. Chem. Soc. 116, 9320 (1994).
- X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays and A. Persoons, Proc. Soc. Photo-Opt. Instrum. Eng. 2143, 41 (1994).
- M.C. Flipse, R. de Jonge, R.H. Woudenberg, A.W. Marsman, C.A. van Walree and L.W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
- O.F.J. Noordman and N.F. van Hülst, Chem. Phys. Lett. 253, 145 (1996).
- K. Clays and A. Persoons, Rev. Sei. Instrum. 65, 2190 (1994).
- G. Olbrechts, E.J.H. Put, K. Clays, A. Persoons and N. Matsuda, Chem. Phys. Lett. 253, 135 (1996).
- N. Matsuda, G. Olbrechts, E.J.H. Put, K. Clays and A. Persoons, Appl. Phys. Lett. 69, 4145 (1996).
- G. Olbrechts, E.J.H. Put, D.Van Steenwinckel, K. Clays, A. Persoons, C. Samyn and N. Matsuda, J. Opt. Soc. Am. B 15, 369 (1998).
- FA6 9:30am -9:45am
- L. Goldberg, R. W. McElhanon, and W. K. Burns, Electron. Lett. 31, 1576 (1995).
- M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanouskos, and D. Harter, Opt. Lett. 22,13 (1997).
- Q. Chen and W. P. Risk, Electron. Lett. 30, 1516 (1994).
- Q. Chen and W. P. Risk, Electron. Lett. 32, 107 (1996).
- G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968). (a) Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218. ^IBM Corporation, Almaden Research Center, San Jose, CA 95120.
- D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, Appl. Phys. Lett. 68,452 (1996).
- K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Opt. Lett. 22,1458 (1997).
- A. Chebira, J. Chesnoy, and G. M. Gale, Phys. Rev. B 46, 4559 (1992).
- M. Woerner, W. Frey, M. T. Portella, C. Ludwig, T. Elsaesser, and W. Kaiser, Phys. Rev. B 49,17007 (1994).
- P. Langot, R. Tommasi, and F. Vallee, Phys. Rev. B 54,1775(1996).
- R. Braunstein, J. Phys. Chem. Solids 8, 280 (1959);
- R. Braunstein, and E. O. Kane, J. Phys. Chem. Solids 23, 1423 (1962).
- E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956);
- S. Wielandy, (unpublished).
- R. Scholz, J. Appl. Phys. 77,3219 (1995). FB2 11:00am-11:30am
- EX. Ivchenko et al., Phys. Sol. State 36,1156 (1994
- T. Stroucken et al., Phys. Rev. B53,2026 (1996)
- M Hübner et al., Phys. Rev Lett. 76, 4199 (1996)
- M. Hübner et al.,Sol. State Commun. 105, 105 (1998)
- J. A. Bolger, A. E. Paul, and A. L. Smirl, Phys. Rev. B 54,11666 (1996).
- A. E. Paul, J. A. Bolger and A. L. Smirl, J. Opt. Soc. Am. B 13,1016 (1996).
- W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, Opt. Lett. 22, 81 (1997).
- O. Buccafusca, X. Chen, W. J. Walecki, and A. L. Smirl, to be published in J. Opt. Soc. Am. B (1998).
- H. Shen, M. Wraback, J. Pamulapati, P. G. Newman, M. Dutta, Y. Lu and H. C. Kuo, Phys. Rev. 47, 13933 (1993).
- Electron-Phonon Quantum Kinetics in Semiconductors Martin Wegener Institut für Angewandte Physik, Univ. Karlsruhe, D-76128 Karlsruhe, Germany Summary Scattering processes in semiconductors, such as electron-phonon scattering, are often thought of as being inherently irreversible. Here we discuss experiments on a 10 fs timescale which show that scattering is reversible for early times. In order to get an intuitive understanding for the electron-phonon interaction, it is useful to consider the analogy with the electron-photon interaction. When a short optical pulse excites a semiconductor at t = 0 a coherent oscillation of the interband transition amplitude is triggered. As long as the quantum mechanical phase of the associated polarization has not been destroyed, the "absorption" process is not completed. Thus an interference with a second time-delayed and phase-locked pulse can reverse (destructive interference) or enhance (constructive interference) the uncompleted absorption process. This technique, called cohe- rent control of the electron (or exciton) density, has indeed been used[l,2]. In the Quantum Kinetics regime[3-7] one does not only expect a coherent oscillation of the transition ampli- tude, but also a coherent oscillation of the scattering amplitude containing the thermal bath degrees of freedom. Its decay determines the memory time of the sub-system r m . For times t < T m it should be possible to adjust the phase of the two components of the scattering amplitude, generated by the two phase-locked pulses, such that they interfere destructively 0-7803-4950-4/98/$10.00 1998 IEEE References
- W.S. Warren et al., Science 259, 1581 (1993)
- A. P. Heberle et al., Phys. Rev. Lett. 75, 2598 (1995)
- L. Bänyai et al., Phys. Rev. Lett. 75, 2188 (1995)
- F.X. Camescasse et al., Phys. Rev. Lett. 77, 5429 (1996)
- C. Fürst it al,, Phys. Rev. Lett. 78, 3733 (1997)
- P. Kner et al., Phys. Rev. Lett. 78, 1319 (1997)
- M.U. Wehner et al., Phys. Rev. Lett. 80, 1992 (1998)
- M.U. Wehner et al., Opt. Lett. 22 1455 (1997)
- D. Steinbach et al., J. Optical Soc. Am. B 15, 1231 (1998)
- M. Wegener et al., unpublished
- M.U. Wehner et al., Phys. Rev. Lett., submitted (1998) FB6 12:30pm -12:45p ffl References:
- C. Waschke et al., Phys. Rev. Lett. 70, 3319 (1993).
- E.E. Mendez et al., Phys. Rev. Lett. 60, 2426 (1988).
- T. Dekorsy et al., Phys. Rev. B 50, 8106 (1994).
- J. Hader et al. Phys. Rev. B 55,13799 (1997).
- A. Yamamoto et al., Phys. Rev. Lett. 73, 740 (1994).
- FB7 12:45pm -1:00pm Anisotropie Electron-Hole Wavepackets in Quantum Wells for Multiple-Harmonic-Generation in the Terahertz Regime S. Hughes and D.S. Citrin Department of Physics, Washington State University Pullman, Washington 99164, USA Tel: +1 509 335-7014, Fax: +1 509 335-7816, E-mail: [email protected]
- Recently, teraherz (THz) pulses have proven useful for a wide variety of applications, including FIR/time-domain spectroscopy, study and control of Rydberg atoms [1], and T-ray imaging of opti- cal materials. In this talk, we investigate theoretically the simultaneous exposure of a quantum well (QW) to a broadband (T P = 50 fs) optical pulse -to excite both free and Coulombically bound electron- hole (e-h) pairs (excitons) from the crystal ground state -and a £ Q ~ 1 kVcm -1 , w 0 ~ 1 THz driving field to enable the generation of sub-ps ~ 1-20 THz (4-80 meV) electromagnetic (EM) transients. The double excitation scenario produces quantum beating, e-h relative motion wavepackets whose anisotropic structure can be coherently controlled to manifest in unique spectral and time-dependent features in both the optical and THz regimes of the EM spectrum. Our theoretical approach is based on a unified, nu- merical solution of the 2D-anisotropic semiconductor Bloch equations in the presense of both an optical pulse and a THz driving field. We study QW excitation by realistic driving frequencies with arbitrary polarisations. New and intriguing carrier dynamics emerge, and a series of relative motion wavepackets will be depicted and analysed. In the optical regime, we verify the existence of a dynamical Franz-Keldysh effect [2] whose experimen- tal signature appears via oscillations in the absorption above the semiconductor bandgap and a series of sideband frequencies resulting from non-linear wavemixing. In the THz regime (see Fig. 1), the emitted field exibits a strong peak at around the lS-excitonic binding energy of the semiconductor. In addition, a rich variety of harmonic spectra also appears -depending on the relative phase (at t=0: centre of the optical pulse) and frequency of the driving field: £ D (x,t) = £ 0 cos(27ri/t + <j>) X; note that <t > = 0 and <j > = TT/2 are shown here for a linear-polarised driving field with v = 1.5 THz. Fig. 1(a) shows the emitted THz field (absolute value) verses energy, and Fig. 1(b) displays the corresponding time-dependent field. Terahertz driving fields have recently been employed from the free-electron laser to generate somewhat similar harmonic-generation from confined magnetoexcitons [3].
- J. L. Krause, K. J. Schäfer, M. Ben-Nun, and K. R. Wilson, Phys. Rev. Lett. 79, 4978 (1998).
- A. P. Jauho and K. Johnsen, Phys. Rev. Lett. 24, 4576 (1997).
- J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, Jr, and H. Sakaki, Phys. Rev. Lett. 79, 1758 (1997).
- M. Protopapas, D. G. Lappas, and P. L. Knight, Phys. Rev. Lett. 23, 4550 (1997).
- G. G. Paulus, F. Zacher, H. Walther, A. Lohr, W. Becker, and M. Kleber, Phys. Rev. Lett. 80, 484(1998).
- D. Fröhlich, S. Spitzer, B-Uebbing, and R. Zimmermann, Phys. Stat. Sol. (b) 173, 83 (1992).
- Abdulsabirov, R.
- Ablowitz, M. Abraham, E. Adibi, A. Agranat, A. Akgün, G. Akhmediev, N. Akmaloni, A. Alley, T. Ammerlahn, D. An,X. Anderson, R. Andreoni, A. Aoyama, T. Arbel, D. Arbore, M. Arecchi, F. Armenise, M. Athayde-Filho, A Aytür, O. Bacher, G. Backus, S. Banfi, G. Banks, P. Baraniuk, R. Bardwell, J. Barmenkov, Y. Barnes, N. Bartels, A. Baxter, G. Bender, M. Bergman, K. Bertolotti, M.
- Betin, A. Bezerra Jr., A.
- Bhowmik, A. Biaggio, I. Biondini, G. Blair, S. Bloembergen, N. Blow, K. Bondani, M. Boothroyd, S. Bosenberg, W. Bosshard, Ch.
- Boyce, J. Boyd, R. Brilliant, N. Brown, R. Brueck, S. Bryant, G. Buccafiisca, O.
- Burkett, W. Burr, K. Buse, K. Byer, R. Caetano, D. Caplen, J. Carosella, C. Cavalcanti, S. Chan, L. Chang, T. Chang, Z. Chen, C. Chen, H. Chen, J-J Chen, M. Chen, P. Chen, S-H Chen, X. Chen, Y. Chen, Z. Chiao, M. Chiao, R. Choi, S. Chraplyvy, A. Chrostowski, J. Chu, S. Citrin, D. Clays, K. Cokgor, I. Collett, M. Collings, B. Collins, S. Conese, T. Cook, G. Crosignani, B. Cui, Y. Cundiff, S. Curri, V. Da Rocha, G. Da Silva-Filho, Dangel, S. Datta,P. De Araüjo, C. De Melo, C. de Oliveira, J. de Souza, R. De Yoreo, J. Dearborn, M. Degasperis, A. Degiorgio, V. Dekorsy, T. Del Fatti, N. Delgado, G. DelRe, E. Demos, S, Denk, W. Deykoon, A. Di Porto, P.
- Harris, S. Harter, D. Harvey, J. Hayakawa, T. Hegarty, J. Heid, C. Herman, G. Herne, C. MD2 WB2 TuB6 TuC23 ThCl TuC8 MCI WB4 Hesselink, L. MC15,MC16,WA1
- Hey, R. Hickman, J. Hjelme, D. Hollberg, L. Holzner, R. Hong, H-K Hong, J. Hsu, C-C Hsu, C-H Huang, T-H Hughes, S. Ieda, M. Ikegami, T. Il'ichev, N. Ishi, J. Ito, R. Izumida, S. Izutsu, M. Jaaskelainen, T.
- Janz, S. Jiang, Z. Jo, J. Jones, D. Jonusauskas, G.
- Joshi, C. Köprülü, K. Kaminskii, A. Kang, J. Kang, J. Kapteyn, H. Kartalo §lu, T.
- Katayama, R. Katsriku, F. Katz, T. Kauranen, M. Kauzlarich, S.
- Kawaguchi, H. Kawazoe, T. Kazovsky, L. Kelly, A. Kenan, R. Kenrow, J. Ketchel, B. Khitrova, G. Khoo, I. Khurgin, Kim, D. Kim, S. Kimble, J. Kir'yanov, A. Kishino, S. Kiziyalli, I. Klein, M. Klimov, V. Knies, D. Knox, W. Kobayashi, T. Koch, K. Koch, S. Kogelnik, H. Kogoshi, S. Koh, S. Kojima, K. Kondo, T. Korableva, S. Koroteev, N. Korte.F. Koya, H. Kozhevnikov, N.
- Kraabel, B. Krikunov, S. Krylov, D. Kühl, J. Kuklov, A. Kunugita,H. TuC25,TuC26,TuC27
- Ma,B. Macdonald, R. Maeda, A. Maeda, H. Maeda, J. Magnitskii, S. Magruder III, R. Mahadervan, A. Makarov, V. Malakhov, D. Malomed, B. Mancini, S. Mangir, M. Manning, R. Marhic, M. Martinez, A. Matera, F. Matsumoto, H. Matthews, C. Mayeri, D. McBranch, D. McEvoy, P. Mcleod, R. McMichael, I. McMorrow, D. Meindl, P. Melinger, J. Menyuk, C. Merlin, R. Midrio, M. Miller, J. Minelly, J. Minoshima, K. Misawa, K. Mitchell, M. Mitchell, P. Mitchell, S. Mittleman, D. Mizumoto, T. Mizunami, T. Mizutani, T. Mlynek, J. Moore, G. Morita, R. Morre, G. Mozume, T. Murata, H. Murdoch, S. Murnane, M. Nagai, M. Nagasako, E. Nakano, Y. Nakatsuhara, K.
- Neelamani, R. Neogi, A. Ning, C-Z Nolte, D. Nuckolls, C. O'Gorman, J. O'Meara, T. Ochiai, K. Ochiai, S. Ogata, N. Ohashi, A. Ohtake, H. Okamoto, T. Okumura, N. Olbrechts, G. Ono, S. Orenstein, M. Orriols, G. Osborne, D. Palmer, A. Paraschis, L. Parkins, A. Pashinin, P. Pepper, D. Perakis, I. Perry, M. Persoons, A. Pesquera, L. Petrov, V. Pfister, O. Pi,F. Pierce, I. Ploog, K. Potenza, M. Poustie, A. Psaltis, D. Qiang, D. Qiu, M. RCyset, A. Radousky, H. Rahman, B. Rebic, S. Rees, P. Reich, M. Rentzepis, P. Reznikov, Y. Ricco, F. Rikukawa, M. Risk, W. Rong, Z. Rulliere, C. Rundquist, A. Ryang, H-S Sainul, H. Saka, Y. Sakai, M. Salamo, G. Sandford, S. Sano, K. Sanui, K. Sarkisov, S. Sarukura, N. Sarychev, A. Sasabe, H. Sato, H. Sattigeri, J. Sayed, K. Scheuer, J. Schiestel, S. Schwarz, C. Scully, M. Segev, M. Settembre, M. Shahbazyan, T.
- Shahriar, M. Shalaev, V. Shen, R. Shen, X. Shen, Y. Sherwood, J. Shiau, C-W Shigekawa, H. Shih, M-Y Shore, K. Shubin, V. Sibilia, C. Simas, A. Simoni, F. Singh, N. Skirtach, A. Slusher, R. Slussarenko, S. Smirl, A. Smith, D. Snyder, A. Solomatine, I.
- Soskin, M. Soto-Crespo, J.
- Spencer, P. Spitz, E. Staggs, M. Stanton, C. Starodumov, A.
- Steckman, G. Stroucken, T. Stroud, C. Stroud, R. Torres, I. Townes, C. Uchida, Y. Ueda, M. Ueno, Y. Valle, A. Vallee, F. Van Baak, D. Van Elshoct, S.
- Wada, T. Wade, S. Wagner, K. Walls, D. Wang, F. Wang, R. Wang, S. Wang, W. Wang, Y. Wegener, M. Wei, T-H Wells, J. Weverka, R. Wilkosz, A. Wittier, O. Wong, K. Wood, G. Wood, W. Xiao, M. Xiao, R. Xu, J. Yablonovitch, E.
- Yamashita, M. Yan,M. Yanagisawa, H.
- Yang, C. Yang, C-S Yang,H. Yang,Z. Yasui, T. Yasumoto, K.
- Yeh, F-F Yeh, P. Yi,X. Yin, G. Yokota, M. Yoon, C. Yoshida, H. Yoshikawa, T. Zhang, X-C Zhang, Y. Zhang, Z. Zhao, J. Zheng, Y. Zhou, F. Zhou, G. Zhou, L. Zhu, Q. Zitelli, M. Zuhr, R.
FAQs
AI
What are the key findings regarding the efficiency of passive Q-switch lasers?addThe study reveals that Q-switch lasers with crystalline passive switches exhibit varying output energy and pulse duration based on the orientation of polarization and refractive index ratios, enhancing efficiency.
How does the methodology for measuring nonlinear susceptibility differ among materials?addThe paper identifies distinct approaches for measuring nonlinear susceptibility; for bacteriorhodopsin, hyper-Rayleigh scattering was employed, while for organic compounds, Z-scan techniques provided comparative analyses.
What explains the phenomenon of coherence collapse in semiconductor lasers?addCoherence collapse occurs due to chaotic dynamics resulting from optical feedback, with back reflections causing dramatic spectral broadening even at low reflection levels of 10^{-4}.
When were the effects of random phasors modeled in two-wave mixing experiments?addThe effects of random phasors were modeled to address noise in two-wave mixing, indicating that fluctuations during recording significantly impact the signal-to-noise ratio.
How do two-photon absorption processes affect nonlinear optical dynamics?addThe study demonstrates that two-photon absorption enhances nonlinear optical dynamics and signal clarity, contributing to improved detection and manipulation of quantum states.
Related papers
Modeling the Time-Dynamics of Miniature Passively Q-switched LasersScott BuchterIEEE Journal of Quantum Electronics, 2009
The pulse-buildup in miniature passively -switched lasers occurs in a similar time-scale as the phonon-assisted thermalization of the laser manifolds. We study how the time-dynamics of the laser is affected by the thermalization and relaxation processes using a dimensionless geometrical rate equation model for a homogeneously broadened four-level gain medium. The pulse length is found to depend strongly on the thermalization rate when the ratio of the ground-state absorption cross section of the saturable absorber to the spectroscopic emission cross section of the laser transition is small ( 10). Numerically calculated design curves are shown for the 1064 nm transition in Nd:YAG, and guidelines are given for applying the model to other transitions. Experimental results are used for estimating the thermalization time constant of Nd:YAG for the 1 m transition group and the groundstate absorption cross section of the Cr 4+ :YAG saturable absorber crystal.
downloadDownload free PDFView PDFchevron_rightOptimization of passively Q-switched lasers - Quantum Electronics, IEEE Journal ofJohn DegnanAbstrmt-In optimizing passively Q-switched lasers, there is a unique choice of output coupler and unsaturated absorber transmission which maximizes the laser output energy and efficiency for each three-way combination of laser gain medium, absorber medium, and pump intensity (i.e., inversion density). In the present paper, we generalize and solve the three coupled differential equations which describe the passively Q-switched laser to obtain closed form solutions for key laser parameters such as the output energy and pulsewidth. We then apply the Lagrange multiplier technique to determine the optimum mirror reflectivities and unsaturated absorber transmissions as a function of two dimensionless variables. The first variable, 2, corresponds to the ratio of the logarithmic round-trip small signal gain to the roundtrip dissipative (nonuseful) optical loss and is identical to that which was used in previous treatments to optimize the rapidly Qswitched laser. The second variable, cy, is unique to the passively &-switched laser and is equal to the saturation energy density of the amplifying medium divided by the saturation energy density of the absorber. It is largely determined by the ration of the absorber to stimulated emission cross sections, but also depends on the speed of relaxation mechanisms in the amplifying and absorbing media relative to the resonator photon decay time. Several design curves, valid for all four level amplifgng and absorbing media, are then generated. These permit the design of an optimum passively Q-switched laser and an estimate of its key performance parameters to be obtained quickly with the aid of a simple hand calculator. In the limit of large N (>lo), the design curves are virtually indistinguishable from the rapidly Q-switched m e . The curves can also be used to perform rapid tradeoff studies of Merent absorbing materials. The theory can also be applied to CW-pumped, repetitively Qswitched systems through a simple multiplicative factor for the laser gain. The theory is applied to the analysis of a passively Qswitched Nd : YAG laser previously reported in the literature and shown to give excellent agreement with the experimental results.
downloadDownload free PDFView PDFchevron_rightOptimization of passively Q-switched lasersJohn DegnanIEEE Journal of Quantum Electronics, 1995
Abstrmt-In optimizing passively Q-switched lasers, there is a unique choice of output coupler and unsaturated absorber transmission which maximizes the laser output energy and efficiency for each three-way combination of laser gain medium, absorber medium, and pump intensity (i.e., inversion density). In the present paper, we generalize and solve the three coupled differential equations which describe the passively Q-switched laser to obtain closed form solutions for key laser parameters such as the output energy and pulsewidth. We then apply the Lagrange multiplier technique to determine the optimum mirror reflectivities and unsaturated absorber transmissions as a function of two dimensionless variables. The first variable, 2, corresponds to the ratio of the logarithmic round-trip small signal gain to the roundtrip dissipative (nonuseful) optical loss and is identical to that which was used in previous treatments to optimize the rapidly Qswitched laser. The second variable, cy, is unique to the passively &-switched laser and is equal to the saturation energy density of the amplifying medium divided by the saturation energy density of the absorber. It is largely determined by the ration of the absorber to stimulated emission cross sections, but also depends on the speed of relaxation mechanisms in the amplifying and absorbing media relative to the resonator photon decay time. Several design curves, valid for all four level amplifgng and absorbing media, are then generated. These permit the design of an optimum passively Q-switched laser and an estimate of its key performance parameters to be obtained quickly with the aid of a simple hand calculator. In the limit of large N (>lo), the design curves are virtually indistinguishable from the rapidly Q-switched m e . The curves can also be used to perform rapid tradeoff studies of Merent absorbing materials. The theory can also be applied to CW-pumped, repetitively Qswitched systems through a simple multiplicative factor for the laser gain. The theory is applied to the analysis of a passively Qswitched Nd : YAG laser previously reported in the literature and shown to give excellent agreement with the experimental results.
downloadDownload free PDFView PDFchevron_rightAnalytical equation for optimizing the passively Q-switched lasersRabah MOKDADJournal of Optics, 2015
The present paper evidences the existence of an analytical equation expressing the different physical parameters of a passively Q-switched laser. This equation is obtained by studying the laser linear stability and allows computing the saturable absorbents concentration. This concentration optimizes the laser peak power. The analytical equation is validated by comparing the obtained results with that of the numerical simulation as well as that obtained by other authors. A good agreement has been observed in these comparisons.
downloadDownload free PDFView PDFchevron_rightA comprehensive model for Q switching in semiconductor lasersben thomasIEEE Journal of Quantum Electronics, 1975
By combining a carrier concentration-dependent loss term the loss and gain necessary to explain Q switching and conwith our earlier time-dependent saturable absorption loss term we have cluded that a superlinear dependence of loss with current was produced a comprehensive theory for Q switching which successfully accounts for the results so far reported. The concentxation-dependent required and that such a dependence was provided by a conloss term shows a superlinear dependence with current due to the
downloadDownload free PDFView PDFchevron_rightLaser diode structures with a saturable absorber for high-energy picosecond optical pulse generation by combined gain-and Q-switchingE. AvrutinSemiconductor Science and Technology
The performance of gain-switched Fabry-Perot asymmetric-waveguide semiconductor lasers with a large equivalent spot size and an intracavity saturable absorber was investigated experimentally and theoretically. The laser with a short (~ 20 m) absorber emitted highenergy afterpulse-free optical pulses in a broad range of injection current pulse amplitudes; optical pulses with a peak power of about 35 W and a duration of about 80 ps at half maximum were achieved with a current pulse with an amplitude of just 8 A and a duration of 1.5 ns. Good quality pulsations were observed in a broad range of elevated temperatures. The introduction of a substantially longer absorber section lead to strong spectral broadening of the output without a significant improvement to pulse energy and peak power. Introduction: Picosecond-range (~100 ps) high energy optical pulse generation with semiconductor lasers has attracted significant attention recently, with a view for obtaining compact optical sources for applications such as high-precision laser radars (the most immediate intended application in our studies) three-dimensional (3-D) time imaging, spectroscopy and lifetime studies. Pulses of such duration, or shorter, have been reported by a large number of authors since the early days of laser diode technology (see e.g. [1,2] for an overview). The main techniques used are gain switching (pumping the laser with a current pulse of a nanosecond duration or somewhat shorter, but still significantly longer than the desired optical pulse), active or passive Q-switching (using a laser incorporating an active voltage-controlled modulator or a saturable absorber respectively), or a combination of these techniques. The general principles of all these regimes have been relatively well understood
downloadDownload free PDFView PDFchevron_rightModeling of generation dynamics of passively and actively Q‐switched solid‐state lasersRobertas NavakasMathematical Modelling and Analysis - MATH MODEL ANAL, 2000
A theoretical model for simulation of generation dynamics of microchip lasers is presented. A number of physical effects influencing generation of microchip lasers that are usually omitted are accounted. Results of theoretical calculations are in good agreement with experimental data.
downloadDownload free PDFView PDFchevron_rightEffects of thermalization on Q-switched laser propertiesJohn DegnanIEEE Journal of Quantum Electronics, 1998
The conventional rate equations for a Q-switched laser are augmented to explicitly include the effects of time-and level-dependent pumping, thermalization among the sublevels in the upper and lower multiplets, and multiplet relaxation in a homogeneously broadened four-level laser medium. To make the numerical computations more generally valid, we introduce a number of dimensionless variables. We show that the initial set of five coupled differential equations can be reduced to a simple set of two coupled equations for the inversion density and photon flux. Via numerical modeling, we have investigated the manner in which both thermalization and lower multiplet relaxation affect Nd:YAG laser characteristics such as output energy and temporal waveform. Our numerical results confirm earlier predictions that the Q-switched Nd:YAG laser output energy increases monotonically by a factor of 3.33 as one progresses from the assumption of slow to rapid thermalization and by an additional factor of 1.46 if one further assumes a terminal multiplet relaxation which is fast relative to the resonator photon decay time. We also find that the laser pulsewidth is substantially broadened when the resonator photon decay time is comparable to the thermalization, and to a lesser extent, the terminal multiplet relaxation times. Furthermore, when the Q-switched laser is operated near threshold and the photon decay time is significantly less than the thermalization time constant, the laser will produce a damped pulse train resulting from periodic replenishment of the population inversion through thermalization among the Stark sublevels. Our energy and pulsewidth calculations reproduce the measured values of two well-characterized diode-pumped Nd:YAG slab lasers quite well provided one assumes a thermalization time among nondegenerate Stark sublevels of 3-5 ns. This result contrasts with other experimental work which suggests subnanosecond terminal multiplet lifetimes. Possible reasons for the discrepancies are explored.
downloadDownload free PDFView PDFchevron_rightAnalisis of a large mode neodymium laser passiveely Q-switched with a saturable absorber and a SBS mirroVicente ABOITES, FInstPJournal of the Optical Society of America B
A neodymium laser passively Q switched with a saturable absorber and a stimulated-Brillouin-scattering mirror is numerically studied. An explanation is given for the laser beam spot-size widening. It is shown that this phenomenon is, most probably, due to nonperfect phase conjugation that occurs during the stimulated-Brillouin-scattering process through switching by intracavity radiation. The results of numerical simulation of the laser that account for this phenomenon are compared with experiment. It is demonstrated that the calculated output energy and pulse duration are in good agreement with those measured experimentally.
downloadDownload free PDFView PDFchevron_right$\mathcal {Q}$-switching in a neodymium laserLuis RosoEuropean Journal of Physics, 2012
We present a laboratory experiment for advanced undergraduate or graduate laser-related classes to study the performance of a neodymium laser. In the experiment, the student has to build the neodymium laser using an open cavity. After that, the cavity losses are modulated with an optical chopper located inside, so the Q-switching regime is achieved. Also a nonlinear crystal can be inserted in the cavity in order to have second harmonic generation. Finally, the relation between the transverse modes and the temporal emission in the Q-switching regime can be observed.
downloadDownload free PDFView PDFchevron_rightkeyboard_arrow_downView more papers- Explore
- Papers
- Topics
- Features
- Mentions
- Analytics
- PDF Packages
- Advanced Search
- Search Alerts
- Journals
- Academia.edu Journals
- My submissions
- Reviewer Hub
- Why publish with us
- Testimonials
- Company
- About
- Careers
- Press
- Help Center
- Terms
- Privacy
- Copyright
- Content Policy
Từ khóa » Thc24-b G2
-
THC24-B G2 - BV-Control AG
-
[PDF] THC24-B G2 - Trox Hesco
-
THC24-B G2 Kommunikationsgerät - Systemair
-
[PDF] BC24 G2 - Systemair
-
THC24-B Steuergerät Für 1 BSK - Lü
-
THC24-B G2 Technisches Datenblatt - PDF Kostenfreier Download
-
BC24 - PBH Online Shop
-
[PDF] Thc24-1b_sm_technische_daten.pdf - SM-HEAG Klimatechnik AG
-
[PDF] THC24-B - Schako
-
[PDF] Brandschutzklappe
-
Persistence Of An Alternate Chromatin Structure At Silenced Loci In The ...
-
0001104659-18-011385.txt
-
Giày Cao Gót ánh Nhũ Tôn Sáng Sang Chảnh 5cm THC24 - Shopee