Phương Pháp Giải Nhanh Bài Toán Số Phức Bằng Máy Tính Casio

Tài liệu gồm 12 trang hướng dẫn các phương pháp giải nhanh bài toán số phức bằng máy tính Casio – Vinacal kèm theo các bài tập rèn luyện, tài liệu được biên soạn bởi tác giả Nguyễn Việt Anh, đây là các kỹ thuật giải toán mà các em nên tìm hiểu để phát huy tối đa công dụng của máy tính cầm tay trong giải toán số phức, giúp tìm ra hướng giải và tiết kiệm thời gian.

A. Các phép tính thông thường, tính moldun, argument, conjg của 1 số phức hay 1 biểu thức số phức và tính số phức có mũ cao. Bài toán tổng quát: Cho Z = z1.z2 – z3.z4/z5. Tìm z và tính modun, argument và số phức liên hợp của số phức Z. Phương pháp giải: + Để máy tính ở chế độ Deg không để dưới dạng Rad và vào chế độ số phức Mode 2. + Khi đó chữ “i” trong phần ảo sẽ là nút “ENG” và ta thực hiện bấm máy như 1 phép tính bình thường. Tính Moldun, Argument và số phức liên hợp của số phức Z: + Moldun: Ấn shift + hyp. Xuất hiện dấu trị tuyệt đối thì ta nhập biểu thức đó vào trong rồi lấy kết quả. + Tính Arg ấn Shift 2 chọn 1. Tính liên hợp ấn shift 2 chọn 2. B. Tìm căn bậc 2, chuyển số phức về dạng lượng giác và ngược lại. 1. Tìm căn bậc 2 của số phức và tính tổng hệ số của căn đó. Bài toán tổng quát: Cho số phức z thỏa mãn z = f(a, bi). Tìm 1 căn bậc 2 của số phức và tính tổng, tích hoặc 1 biểu thức của hệ số. Phương pháp giải: Cách 1: Đối với việc tìm căn bậc 2 của số phức cách nhanh nhất là ta bình phương các đáp án xem đáp án nào trùng số phức đề cho. Cách 2: Không vào chế độ Mode 2. Ta để máy ở chế độ Mode 1. + Ấn shift + sẽ xuất hiện và ta nhập Pol(phần thực, phần ảo). Lưu ý dấu “,” là shift) sau đó ấn =. + Ấn tiếp Shift – sẽ xuất hiện và ta nhập Rec(√X, Y:2) sau đó ấn bằng ta sẽ ra lần lượt là phần thực và phần ảo của số phức. 2. Đưa số phức về dạng lượng giác và ngược lại. Bài toán tổng quát: Tìm dạng lượng giác (bán kính, góc lượng giác) của số phức thỏa mãn z = f(a, bi). Phương pháp giải: + Ấn shift chọn 4 (r < θ) sau khi nhập số phức. + Ấn = sẽ ra kế quả a < b trong đó r = a, góc = b. Chuyển từ lượng giác về số phức: chuyển về radian: + Nhập dạng lượng giác của số phức dưới dạng: bán kính < góc (với < là shift (-)). + Ấn shift 2 chọn 4 (a = bi) và lấy kết quả. 3. Các phép toán cơ bản hoặc tính 1 biểu thức lượng giác của số phức. Làm tương tự như dạng chính tắc của số phức. [ads] C. Phương trình số phức và các bài toán liên quan. 1. Phương trình không chứa tham số. Bài toán tổng quát: Cho phương trình az^2 + bz + c = 0. Phương trình có nghiệm (số nghiệm) là? Phương pháp giải: + Dùng cho máy Vinacal: Mode 2 vào chế độ phức và giải phương trình số phức như phương trình hàm số như bình thường và nhân được nghiệm phức. + Đối với Casio fx: Nhiều phương trình có nghiệm thực nên cách tốt nhất ta sẽ nhập phương trình đề cho vào máy tính và thực hiện Calc đáp án để tìm ra đáp án. 2. Phương trình tìm tham số. Bài toán tổng quát: Cho phương trình az^2 + bz + c = 0. Biết phương trình có nghiệm zi = Ai. Tìm a, b, c. Phương pháp giải: + Mode 2 và lần lượt thay các hệ số ở đáp án vào đề. + Dùng Mode 5 để giải phương trình nếu phương trình nào ra nghiệm như đề cho thì đó là đáp án đúng. D. Tìm số phức thỏa mãn điều kiện phức tạp và tính tổng, tích … hệ số của số phức (Ngoài cách hỏi trên còn có thể hỏi: Tìm phần thực, phần ảo hay modun … của số phức thỏa mãn điều kiện đề bài). Bài toán tổng quát: Cho số phức z = a + bi thỏa mã điều kiện (phức tạp kèm cả liên hợp …). Tìm số phức z? Phương pháp giải: + Nhập điều kiện đề cho vào Casio. Lưu ý thay z = a + bi và liên hợp của z = a – bi. + Calc a = 1000 và b = 100. + Sau khi ra kết quả là : X + Yi ta sẽ phân tích X và Y theo a và b để được 2 phương trình bậc nhất 2 ẩn để giải tìm ra a và b. + Lưu ý: Khi phân tích ưu tiên cho hệ số a nhiều nhất có thể. + Sau khi tìm được a, b ta làm nốt yêu cầu của đề. E. Tìm tập hợp biểu diễn của số phức thỏa mãn điều kiện và hình học số phức. Bài toán tổng quát: Trên mặt phẳng hệ trục tọa độ Oxy tìm tập hợp biểu diễn của số phức z thỏa mã điều kiện. Phương pháp giải: Ưu tiên việc sử dụng 2 máy tính để giải: + Máy thứ 1 ta nhập điều kiện của đề cho với z và liên hợp z dạng tổng quát. + Máy thứ 2 lần lượt các đáp án. Ta lấy 2 điểm thuộc các đáp án. + Calc 2 điểm vừa tìm vào điều kiện. Cái nào kết quả ra 0 thì đấy là đáp án đúng. F. Cặp số (x, y) thỏa mã điều kiện phức, số số phức phù hợp với điều kiện. Phương pháp giải: + Mode 2 và nhập điều kiện đề cho vào Casio, chuyển hết về 1 vế. + Calc các đáp án. Đáp án nào ra kết quả là 0 thì đó là đáp án đúng.

Tải tài liệu
  • Số Phức
Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: toanmath.com@gmail.com

TÀI LIỆU LIÊN QUAN

Số Phức

Phương pháp giải toán trắc nghiệm số phức – Nguyễn Ngọc Dũng

14/03/2024 Số Phức | Toán 12
Số Phức

Tài liệu chuyên đề số phức

29/06/2023 Số Phức | Toán 12
Phương Pháp Toạ Độ Trong Không Gian

Áp dụng bất đẳng thức Minkowski giải bài toán cực trị số phức và Oxyz

06/06/2023 Phương Pháp Toạ Độ Trong Không Gian | Số Phức | Toán 12
Số Phức

Hệ thống bài tập trắc nghiệm số phức vận dụng cao

09/05/2023 Số Phức | Toán 12
Số Phức

Ôn tập vận dụng cao tổng hợp số phức thi TN THPT 2023 môn Toán

24/04/2023 Số Phức | Toán 12
Số Phức

20 kĩ thuật chinh phục vận dụng cao số phức – Hoàng Xuân Nhàn

14/04/2023 Số Phức | Toán 12
Số Phức

Ngân hàng câu hỏi số phức: Bài toán tìm số phức – Lê Bá Bảo

21/03/2023 Số Phức | Toán 12
Số Phức

Ngân hàng câu hỏi số phức: Phương trình với hệ số thực – Lê Bá Bảo

20/03/2023 Số Phức | Toán 12
Số Phức

Chuyên đề cơ bản số phức và các phép toán ôn thi TN THPT môn Toán

18/02/2023 Số Phức | Toán 12
Số Phức

Bài tập trắc nghiệm cực trị hình học trong số phức

15/01/2023 Số Phức | Toán 12

TÌM KIẾM THEO TỪ KHÓA

Tìm kiếm cho:

TÀI LIỆU MỚI NHẤT

  • 10 đề thi thử sức cuối học kỳ 1 môn Toán 10 THPT sách Cánh Diều 12/12/2024
  • Đề cương cuối kỳ 1 Toán 10 năm 2024 – 2025 trường THPT Thanh Khê – Đà Nẵng 12/12/2024
  • Đề cương cuối kỳ 1 Toán 11 năm 2024 – 2025 trường THPT Thanh Khê – Đà Nẵng 12/12/2024
  • Đề cương cuối kỳ 1 Toán 12 năm 2024 – 2025 trường THPT Thanh Khê – Đà Nẵng 12/12/2024
  • Đề cương cuối kỳ 1 Toán 11 năm 2024 – 2025 trường THPT Trưng Vương – Bình Định 11/12/2024
  • Đề minh họa cuối kỳ 1 Toán 10 năm 2024 – 2025 trường THPT Nguyễn Thái Bình – TP HCM 10/12/2024

Copyright © 2024 | TOANMATH.com

Từ khóa » Cách Bấm Z Ngang Trên Casio