Phương Pháp Giải Phương Trình Bậc Hai Một ẩn Hay, Chi Tiết

Phương pháp giải phương trình bậc hai một ẩn lớp 9 (hay, chi tiết)
  • HOT Sale 40% sách cấp tốc Toán - Văn - Anh vào 10 ngày 02-02 trên Shopee mall
Trang trước Trang sau

Bài viết Phương pháp giải phương trình bậc hai một ẩn lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp giải phương trình bậc hai một ẩn.

  • Cách giải bài tập Phương pháp giải phương trình bậc hai một ẩn
  • Bài tập vận dụng Phương pháp giải phương trình bậc hai một ẩn
  • Bài tập tự luyện Phương pháp giải phương trình bậc hai một ẩn

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST

  • Lập bảng giá trị của hàm số y = ax2 (a ≠ 0)
  • Tìm điểm thuộc đồ thị của hàm số y = ax2 (a ≠ 0)
  • Nhận biết hàm số, đồ thị hàm số y = ax2 (a ≠ 0) và vẽ đồ thị hàm số y = ax2 (a ≠ 0)
  • Xác định hệ số a khi biết đồ thị hàm số y = ax2 (a ≠ 0) đi qua điểm M(x0; y0)
  • Ứng dụng thực tế của đồ thị hàm số y = ax2 (a ≠ 0)
  • Nhận biết phương trình bậc hai một ẩn và xác định các hệ số của nó
  • Giải phương trình bậc hai một ẩn có dạng đặc biệt (khuyết số hạng bậc nhất hoặc khuyết số hạng tự do)
  • Xác định số nghiệm của phương trình bậc hai và bài toán tìm tham số để phương trình bậc hai chứa tham số thỏa mãn yêu cầu về số nghiệm
  • Dùng công thức nghiệm để giải phương trình bậc hai một ẩn ax2 + bx + c = 0 (a ≠ 0)
  • Xét sự tương giao của đồ thị hàm số y = ax2 (a ≠ 0) với đồ thị hàm số bậc nhất y = bx + c
  • Ứng dụng công thức nghiệm trong bài toán tìm tham số thỏa mãn sự tương giao của đồ thị hàm số chứa tham số
  • Tính tổng, tích và giá trị của biểu thức đối xứng giữa các nghiệm x1, x2 của phương trình bậc hai một ẩn mà không giải phương trình
  • Tính nhẩm nghiệm của phương trình bậc hai dựa vào định lí Viète
  • Lập phương trình bậc hai khi biết các nghiệm của nó và tìm hai số khi biết tổng, tích của hai số đó
  • Ứng dụng định lí Viète trong phân tích đa thức ax2 + bx + c thành nhân tử
  • Xác định tham số để phương trình bậc hai thỏa mãn điều kiện về dấu của các nghiệm
  • Xác định tham số để phương trình bậc hai thỏa mãn điều kiện cho trước khác
  • Ứng dụng của định lí Viète trong bài toán tìm tham số thỏa mãn sự tương giao của hai đồ thị chứa tham số
  • Giải bài toán bằng cách lập phương trình

A. Phương pháp giải

Phương trình bậc hai một ẩn có dạng  ax2 + bx + c = 0  (a ≠ 0). Để giải phương trình ta làm như sau

B1: Xác định các hệ số a, b, c

B2: Tính ∆ = b2 - 4ac

+ Nếu ∆ < 0 thì phương trình vô nghiệm

+ Nếu ∆ = 0 thì phương trình có nghiệm kép:  Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

+ Nếu ∆ > 0 thì phương trình có 2 nghiệm phân biệt:

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Ví dụ 1: Giải phương trình x2 + 3x + 3 = 0

Giải

Ta có: a = 1; b = 3; c = 3 ⇒ ∆ = b2 – 4ac = 9 – 12 = - 3 < 0

Vậy phương trình vô nghiệm.

Ví dụ 2: Giải phương trình  x2 + x - 5 = 0

Giải

Ta có: a = 1; b = 1; c = - 5 ⇒ ∆ = b2 – 4ac = 1 + 20 = 21 > 0

Vậy phương trình có hai nghiệm phân biệt:

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Ví dụ 3: Giải phương trình x2 + 2Phương pháp giải phương trình bậc hai một ẩn hay, chi tiếtx + 2 = 0

Giải

Ta có: a = 1; b = 2Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết; c = 2

⇒ ∆ = b2 – 4ac = Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy phương trình có nghiệm kép: Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

* Công thức nghiệm thu gọn: Dùng khi hệ số b = 2bꞌ

Phương trình ax2 + bx + c = 0 (a ≠ 0) có ∆ꞌ = (bꞌ)2 - ac (b = 2bꞌ)

+ Nếu ∆ꞌ < 0 thì phương trình vô nghiệm

+ Nếu ∆ꞌ = 0 thì phương trình có nghiệm kép:  Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

+ Nếu ∆ꞌ > 0 thì phương trình có 2 nghiệm phân biệt

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Ví dụ 4: Giải phương trình sau: Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Giải

Ta có: a = 3; bꞌ = -√3 ; c = -3 ⇒ ∆ꞌ = (bꞌ)2 - ac = Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy phương trình có hai nghiệm phân biệt:

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

* Nếu hệ số b = 0 thì phương trình có dạng: ax2 + c = 0 (2)

Để giải phương trình (2) ngoài cách dùng  ∆ hoặc ∆ꞌ ở trên ta có thể làm như sau:

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

+ Nếu ac > 0 thì phương trình vô nghiệm

+ Nếu ac = 0 thì phương trình có nghiệm kép x = 0

+ Nếu ac < 0 thì phương trình có 2 nghiệm phân biệt

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Ví dụ 5: Giải các phương trình sau:

a. 2x2 + 3 = 0

b. -7x2 = 0

c. 3x2 – 12 = 0

Giải

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy phương trình có 2 nghiệm phân biệt: x = 2, x = -2

*Nếu hệ số c = 0 thì phương trình có dạng: ax2 + bx = 0 (3)

Để giải phương trình (3) ngoài cách dùng  ∆ hoặc ∆ꞌ ở trên ta có thể làm như sau

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Ví dụ 6: Giải các phương trình sau

a. 3x2 +8x = 0

b. 5x2 – 10x = 0

Giải

a. Ta có:

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy phương trình có 2 nghiệm là: x = 0, Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

b. Ta có:

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy phương trình có 2 nghiệm là: x = 0, x = 2

B. Bài tập

Câu 1: Một nghiệm của phương trình 3x2 + 5x – 2 = 0 là

A. -2

B. -1

C. -5

D. 0

Giải

Ta có: a = 3; b = 5; c = -2 ⇒ ∆ = b2 – 4ac = 52 – 4.3.(-2) = 49 > 0

Phương trình có hai nghiệm phân biệt:

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy đáp án đúng là A

Câu 2: Số nghiệm của phương trình 3x2 - 6x + 3 = 0 là

A. 3

B. 2

C. 1                     

D. 0

Giải

Ta có: a = 3; bꞌ = -3; c = 3 ⇒ ∆ꞌ = (bꞌ)2 - ac = (-3)2 – 3.3 = 9 - 9 = 0

Suy ra phương trình có một nghiệm

Vậy đáp án đúng là C

Câu 3: Giả sử x1, x2 (x1 > x2) là hai nghiệm của phương trình 5x2 - 6x + 1 = 0.      Tính 2x1 + 5x2

A. 6

B. 5

C. 4

                  

D. 3

Giải

Ta có: a = 5; bꞌ = -3; c = 1 ⇒ ∆ꞌ =(bꞌ)2 - ac = (-3)2 – 5.1 = 9 - 5 = 4 > 0

Suy ra phương trình có hai nghiệm phân biệt

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy đáp án đúng là D

Câu 4: Số thực nào sau đây là nghiệm của phương trình x2 - x + 8 = 0

A. 2

B. 10

C. -15

D. Không có

Giải

Ta có: a = 1; b = -1; c = 8 ⇒ ∆ = b2 – 4ac = (-1)2 – 4.1.8 = -31 <  0

Vậy phương trình vô nghiệm

Vậy đáp án đúng là D

Câu 5: Giả sử x1 < x2 là hai nghiệm của phương trình x2 -7x - 8 = 0. Tính 2x1

A. -2

B. 1

C. -1

D. 6

Giải

Ta có: a = 1; b = -7; c = -8 ⇒  ∆ = b2 – 4ac = (-7)2 – 4.1.(-8) = 81 >  0

Phương trình có hai nghiệm phân biệt

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Suy ra x1 = -1 do đó 2x1 = -2

Vậy đáp án đúng là A

Câu 6: Nghiệm của phương trình 3x2 + 15 = 0 là

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Giải

Phương trình 3x2 + 15 = 0 ⇔ 3x2 = -15 ⇔ x2 = -5 (vô nghiệm)

Vậy đáp án đúng là D

Câu 7: Nghiệm của phương trình x2 + 13x = 0 là

A. 13 và -13

B. 0 và -13

C. 0 và 13

D. Vô nghiệm

Giải

Phương trình x2 + 13x = 0

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy đáp án đúng là B

Câu 8: Cho phương trình  2x2 + 4x + 1 = -x2 - x – 1. Tính |x1 - x2|

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Giải

Phương trình 2x2 + 4x + 1 = -x2 - x – 1

Ta có: a = 3; b = 5; c = 2 ⇔ ∆ = b2 – 4ac = (5)2 – 4.3.2 = 1 >  0

⇒ Phương trình có hai nghiệm phân biệt

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy đáp án đúng là A

Câu 9: Cho phương trình x2 - 10x + 21 = 0. Khẳng định nào sau đây đúng

A. Phương trình vô nghiệm

B. Phương trình có nghiệm không nguyên

C. Phương trình có 1 nghiệm

D. Phương trình có 2 nghiệm nguyên

Giải

Ta có: a = 1; b = -10; c = 21 ⇒ ∆ = b2 – 4ac = (-10)2 – 4.1.21 = 16 >  0

Phương trình có hai nghiệm phân biệt

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy đáp án đúng là D

Câu 10: Số nghiệm của phương trình  4x2 - 6x = -2x là

A. 1                      

B. 0                   

C. 2                     

D. 3

Giải

Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết

Vậy đáp án đúng là C

C. Bài tập tự luyện

Bài 1. Giải các phương trình sau:

a) -3x2+4x-4=0                                     b) 5x2-107x+549=0

c) x2-(2+3)x+23=0                           d) 3x2+3=2(x+1)

e) (2x-2)2-1=(x+1)(x-1)                      f) 12x(x+1)=(x-1)2

Bài 2. Cho phương trình mx2 – 2(m – 1)x + m – 3 = 0. Tìm các giá trị của m để các phương trình:

a) Có hai nghiệm phân biệt;

b) Có nghiệm kép;

c) Vô nghiệm;

d) Có đúng một nghiệm;

e) Vô nghiệm.

Bài 3. Số nghiệm của các phương trình sau:

a) x2 – 6x + 8 = 0;

b) 9x2 – 12x + 4 = 0;

c) -3x2+22x-5=0;

d) 2x2-(1-22)x-2=0

Bài 4. Giải và biện luận các phương trình sau:

a) mx2 + (2m – 1)x + m + 2 = 0;

b) (m – 2)x2 – 2(m + 1)x + m = 0.

Bài 5. Cho phương trình (m – 2)x2 – 2(m + 1)x + m = 0. Tìm m để phương trình có nghiệm kép và tính 2x1 + x2

(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

  • Cách xác định các hệ số a, b, c của phương trình bậc hai một ẩn
  • Cách giải các dạng toán giải phương trình bậc hai một ẩn cực hay
  • Cách giải và biện luận phương trình bậc hai một ẩn cực hay
  • Cách giải hệ phương trình 2 ẩn bậc hai cực hay, chi tiết
  • Cách tìm m để hai phương trình có nghiệm chung cực hay
  • Cách giải phương trình bậc nhất hai ẩn cực hay, chi tiết
👉 Giải bài nhanh với AI Hay:
  • HOT 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k)

Tủ sách VIETJACK luyện thi vào 10 cho 2k11 (2026):

  • Bộ 50 đề thi vào 10 Toán, Văn, Anh 2026(250 trang - từ 99k/1 cuốn)
  • Cấp tốc 7,8,9+ Toán Văn Anh thi vào 10 (400 trang -từ 119k)
  • Giải mã đề thi vào 10 theo đề Hà Nội, Tp. Hồ Chí Minh (300 trang - từ 99k/1 cuốn)
  • Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án

TÀI LIỆU CLC DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

+ Bộ giáo án, bài giảng powerpoint, đề thi file word có đáp án 2025 tại https://tailieugiaovien.com.vn/

+ Hỗ trợ zalo: VietJack Official

+ Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đề thi vào 10 các sở Hà Nội, Tp. Hồ Chí Minh..

( 45 tài liệu )

Đề thi giữa kì, cuối kì 9

( 120 tài liệu )

Bài giảng Powerpoint Văn, Sử, Địa 9....

( 36 tài liệu )

Giáo án word 9

( 76 tài liệu )

Chuyên đề dạy thêm Toán, Lí, Hóa ...9

( 77 tài liệu )

Đề thi HSG 9

( 9 tài liệu )

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp Giải bài tập lớp 9 sách mới các môn học
  • Giải Tiếng Anh 9 Global Success
  • Giải sgk Tiếng Anh 9 Smart World
  • Giải sgk Tiếng Anh 9 Friends plus
  • Lớp 9 Kết nối tri thức
  • Soạn văn 9 (hay nhất) - KNTT
  • Soạn văn 9 (ngắn nhất) - KNTT
  • Giải sgk Toán 9 - KNTT
  • Giải sgk Khoa học tự nhiên 9 - KNTT
  • Giải sgk Lịch Sử 9 - KNTT
  • Giải sgk Địa Lí 9 - KNTT
  • Giải sgk Giáo dục công dân 9 - KNTT
  • Giải sgk Tin học 9 - KNTT
  • Giải sgk Công nghệ 9 - KNTT
  • Giải sgk Hoạt động trải nghiệm 9 - KNTT
  • Giải sgk Âm nhạc 9 - KNTT
  • Giải sgk Mĩ thuật 9 - KNTT
  • Lớp 9 Chân trời sáng tạo
  • Soạn văn 9 (hay nhất) - CTST
  • Soạn văn 9 (ngắn nhất) - CTST
  • Giải sgk Toán 9 - CTST
  • Giải sgk Khoa học tự nhiên 9 - CTST
  • Giải sgk Lịch Sử 9 - CTST
  • Giải sgk Địa Lí 9 - CTST
  • Giải sgk Giáo dục công dân 9 - CTST
  • Giải sgk Tin học 9 - CTST
  • Giải sgk Công nghệ 9 - CTST
  • Giải sgk Hoạt động trải nghiệm 9 - CTST
  • Giải sgk Âm nhạc 9 - CTST
  • Giải sgk Mĩ thuật 9 - CTST
  • Lớp 9 Cánh diều
  • Soạn văn 9 Cánh diều (hay nhất)
  • Soạn văn 9 Cánh diều (ngắn nhất)
  • Giải sgk Toán 9 - Cánh diều
  • Giải sgk Khoa học tự nhiên 9 - Cánh diều
  • Giải sgk Lịch Sử 9 - Cánh diều
  • Giải sgk Địa Lí 9 - Cánh diều
  • Giải sgk Giáo dục công dân 9 - Cánh diều
  • Giải sgk Tin học 9 - Cánh diều
  • Giải sgk Công nghệ 9 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
  • Giải sgk Âm nhạc 9 - Cánh diều
  • Giải sgk Mĩ thuật 9 - Cánh diều

Từ khóa » Hệ Pt Bậc 2 Một ẩn