Phương Pháp Giải Và Biện Luận Phương Trình Bậc Hai Cực Hay

Phương pháp giải và biện luận phương trình bậc hai (cực hay)
  • HOT Sale 40% sách Toán - Văn - Anh 10 Vietjack 12-12 trên Shopee mall
Trang trước Trang sau

Bài viết Phương pháp giải và biện luận phương trình bậc hai với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp giải và biện luận phương trình bậc hai.

  • Lý thuyết và cách giải bài tập giải và biện luận phương trình bậc hai
  • Ví dụ minh họa bài tập giải và biện luận phương trình bậc hai
  • Bài tập tự luyện giải và biện luận phương trình bậc hai

Phương pháp giải và biện luận phương trình bậc hai (cực hay)

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Quảng cáo

Lý thuyết & Phương pháp giải

Giải và biện luận phương trình bậc hai ax2 + bx + c = 0

Bước 1. Biến đổi phương trình về đúng dạng ax2 + bx + c = 0

Bước 2. Nếu hệ số a chứa tham số, ta xét 2 trường hợp:

- Trường hợp 1: a = 0, ta giải và biện luận ax + b = 0.

- Trường hợp 2: a ≠ 0. Ta lập Δ = b2 - 4ac. Khi đó:

+ Nếu Δ > 0 thì phương trình có 2 nghiệm phân biệt Các dạng bài tập Toán 10 (có lời giải)

+ Nếu Δ = 0 thì phương trình có 1 nghiệm (kép): x = -b/2a

+ Nếu Δ < 0 thì phương trình vô nghiệm.

Bước 3. Kết luận.

Lưu ý:

- Phương trình ax2 + bx + c = 0 có nghiệm Các dạng bài tập Toán 10 (có lời giải)

- Phương trình ax2 + bx + c = 0 có nghiệm duy nhất Các dạng bài tập Toán 10 (có lời giải)

Ví dụ minh họa

Bài 1: Phương trình (m–1)x2 + 3x – 1 = 0. Phương trình có nghiệm khi:

Lời giải:

Với m = 1, phương trình trở thành 3x - 1 = 0 ⇔ x = 1/3

Do đó m = 1 thỏa mãn.

Với m ≠ 1, ta có Δ = 9 + 4(m-1) = 4m + 5

Phương trình có nghiệm khi Δ ≥ 0

Các dạng bài tập Toán 10 (có lời giải)

Hợp hai trường hợp ta được m ≥ -5/4 là giá trị cần tìm

Quảng cáo

Bài 2: Phương trình (x2 - 3x + m)(x - 1) = 0 có 3 nghiệm phân biệt khi:

Lời giải:

Phương trình (x2 - 3x + m)(x - 1) = 0 ⇔ Các dạng bài tập Toán 10 (có lời giải)

Phương trình (1) có 3 nghiệm phân biệt

⇔ Phương trình (2) có hai nghiệm phân biệt khác 1

Các dạng bài tập Toán 10 (có lời giải)

Bài 3: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10; 10] để phương trình mx2 - mx + 1 = 0 có nghiệm.

Lời giải:

Nếu m = 0 thì phương trình trở thành 1 = 0: vô nghiệm.

Khi m ≠ 0, phương trình đã cho có nghiệm khi và chỉ khi

Δ = m2 - 4m ≥ 0Các dạng bài tập Toán 10 (có lời giải)

Kết hợp điều kiện m ≠ 0, ta đượcCác dạng bài tập Toán 10 (có lời giải)

Vì ∈ Z, m ∈ [-10;10] m ∈ {-10; -9; -8;...; -1} ∪ {4; 5; 6;...; 10}

Vậy có tất cả 17 giá trị nguyên m thỏa mãn bài toán

Bài 4: Tìm tất cả các giá trị thực của tham số m để hai đồ thị hàm số y = -x2 - 2x + 3 và y = x2 - m có điểm chung

Lời giải:

Phương trình hoành độ giao điểm -x2 - 2x + 3 = x2 - m

⇔ 2x2 + 2x - m - 3 = 0. (*)

Để hai đồ thị hàm số có điểm chung khi và chỉ khi phương trình (*) có nghiệm

⇔ Δ' = 1 - 2(-m-3) ≥ 0 ⇔ m ≥ -7/2

Quảng cáo

Bài 5: Tìm giá trị thực của tham số m để đường thẳng d: y = 2x + m tiếp xúc với parabol (P): y = (m–1)x2 + 2mx + 3m – 1

Lời giải:

Phương trình hoành độ giao điểm (m-1)x2 + 2mx + 3m - 1 = 2x + m

⇔ (m-1)x2 + 2(m-1)x + 2m - 1 = 0 (*)

Để d tiếp xúc với (P) khi và chỉ khi phương trình (*) có nghiệm kép

Các dạng bài tập Toán 10 (có lời giải)

Bài tập tự luyện

Bài 1. Giải và biện luận phương trình bậc hai theo tham số m sau:

x2−23m−1x+9m2−6m−8=0.

Hướng dẫn giải

Ta có Δ'=b'2−ac=3m−12−1.9m2−6m−8=9>0.

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

Bài 2. Giải và biện luận phương trình bậc hai theo tham số m sau:

3x2−mx+9m2+m2=0.

Hướng dẫn giải

Ta có Δ=b2−ac=−m2−4.3.m2=−11m2≤0

+ Trường hợp Δ = 0 ⇔−11m2=0⇔m=0

Phương trình có nghiệm kép x=02.3=0.

+ Trường hợp Δ < 0 nên phương trình vô nghiệm.

Bài 3. Tìm m để phương trình sau có hai nghiệm phân biệt:

mx2−2m−1x+m+1=0.

Hướng dẫn giải

Phương trình trên có 2 nghiệm phân biệt khi m≠0Δ'>0

Ta có Δ'=b'2−ac=m−12−m.m+1=−3m+1

Δ'>0⇔−3m+1>0⇔m<13.

Vậy phương trình trên có hai nghiệm phân biệt khi m≠0m<13.

Bài 4. Giải và biện luận phương trình bậc hai theo tham số m sau:

m−1x2−2mx+m+2=0.

Hướng dẫn giải

+) Trường hợp m = 1 nghĩa là a = 0

Ta có m−1x2−2mx+m+2=0

-2x + 3 = 0

x=32

+) Trường hợp m ≠ 1 nghĩa là a ≠ 0.

Ta có Δ'=b'2−ac=m2−m−1.m+2=−m+2

• Δ'=0 hay -m + 2 = 0 hay m = 2 thì phương trình có nghiệm kép.

• Δ'>0 hay -m + 2 > 0 hay m > 2 thì phương trình có 2 nghiệm phân biệt.

• Δ'<0 hay -m + 2 < 0 hay m < 2 thì phương trình vô nghiệm.

Bài 5. Giải và biện luận phương trình bậc 2 theo tham số m sau:

x2−2m−4x+m2=0.

Hướng dẫn giải

Ta có Δ'=b'2−ac=m−42−1.m2=−8m+16.

Xét các trường hợp của ∆’, ta có:

• Δ'=0 hay -8m + 16 = 0 hay m = 2 thì phương trình có nghiệm kép.

• Δ'>0 hay -8m + 16 > 0 hay m > 2 thì phương trình có 2 nghiệm phân biệt.

• Δ'<0 hay -8m + 16 < 0 hay m < 2 thì phương trình vô nghiệm.

Bài 6. Giải và biện luận phương trình bậc 2 theo tham số m sau:

m−1x2−3mx+2m+1=0.

Bài 7. Giải và biện luận phương trình bậc 2 theo tham số m sau:

mx2−2m2x+1=0.

Bài 8. Giải và biện luận phương trình bậc 2 theo tham số m sau:

2m−7x2+22m+5x−14m+1=0.

Bài 9. Giải và biện luận phương trình bậc 2 theo tham số m sau:

x2−mx+3m+1=0.

Bài 10. Giải và biện luận phương trình bậc 2 theo tham số m sau:

m−3x2−5mx+3m−2=0.

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

  • Nghiệm của phương trình bậc hai
  • Bài tập về nghiệm của phương trình bậc hai
  • Phương trình chứa ẩn trong dấu giá trị tuyệt đối
  • Bài tập phương trình chứa ẩn trong dấu giá trị tuyệt đối
👉 Giải bài nhanh với AI Hay:

Để học tốt lớp 10 các môn học sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
  • HOT 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k)

Tủ sách VIETJACK shopee lớp 10-11 (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • Ra mắt Sách 50 đề THPT quốc gia form 2026 toán, văn, anh.... (từ 80k/1 cuốn)

TÀI LIỆU CLC DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

+ Bộ giáo án, bài giảng powerpoint, đề thi file word có đáp án 2025 tại https://tailieugiaovien.com.vn/

+ Hỗ trợ zalo: VietJack Official

+ Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đề thi giữa kì, cuối kì 10

( 254 tài liệu )

Bài giảng Powerpoint Văn, Sử, Địa 10....

( 42 tài liệu )

Giáo án word 10

( 95 tài liệu )

Chuyên đề dạy thêm Toán, Lí, Hóa ...10

( 71 tài liệu )

Đề thi HSG 10

( 8 tài liệu )

Trắc nghiệm đúng sai 10

( 41 tài liệu )

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau phuong-trinh-he-phuong-trinh.jsp Giải bài tập lớp 10 sách mới các môn học
  • Giải Tiếng Anh 10 Global Success
  • Giải Tiếng Anh 10 Friends Global
  • Giải sgk Tiếng Anh 10 iLearn Smart World
  • Giải sgk Tiếng Anh 10 Explore New Worlds
  • Lớp 10 - Kết nối tri thức
  • Soạn văn 10 (hay nhất) - KNTT
  • Soạn văn 10 (ngắn nhất) - KNTT
  • Soạn văn 10 (siêu ngắn) - KNTT
  • Giải sgk Toán 10 - KNTT
  • Giải sgk Vật lí 10 - KNTT
  • Giải sgk Hóa học 10 - KNTT
  • Giải sgk Sinh học 10 - KNTT
  • Giải sgk Địa lí 10 - KNTT
  • Giải sgk Lịch sử 10 - KNTT
  • Giải sgk Kinh tế và Pháp luật 10 - KNTT
  • Giải sgk Tin học 10 - KNTT
  • Giải sgk Công nghệ 10 - KNTT
  • Giải sgk Hoạt động trải nghiệm 10 - KNTT
  • Giải sgk Giáo dục quốc phòng 10 - KNTT
  • Lớp 10 - Chân trời sáng tạo
  • Soạn văn 10 (hay nhất) - CTST
  • Soạn văn 10 (ngắn nhất) - CTST
  • Soạn văn 10 (siêu ngắn) - CTST
  • Giải Toán 10 - CTST
  • Giải sgk Vật lí 10 - CTST
  • Giải sgk Hóa học 10 - CTST
  • Giải sgk Sinh học 10 - CTST
  • Giải sgk Địa lí 10 - CTST
  • Giải sgk Lịch sử 10 - CTST
  • Giải sgk Kinh tế và Pháp luật 10 - CTST
  • Giải sgk Hoạt động trải nghiệm 10 - CTST
  • Lớp 10 - Cánh diều
  • Soạn văn 10 (hay nhất) - Cánh diều
  • Soạn văn 10 (ngắn nhất) - Cánh diều
  • Soạn văn 10 (siêu ngắn) - Cánh diều
  • Giải sgk Toán 10 - Cánh diều
  • Giải sgk Vật lí 10 - Cánh diều
  • Giải sgk Hóa học 10 - Cánh diều
  • Giải sgk Sinh học 10 - Cánh diều
  • Giải sgk Địa lí 10 - Cánh diều
  • Giải sgk Lịch sử 10 - Cánh diều
  • Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
  • Giải sgk Tin học 10 - Cánh diều
  • Giải sgk Công nghệ 10 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 10 - Cánh diều

Từ khóa » Bài Tập Biện Luận Phương Trình Bậc 2