Phương Pháp Tính đạo Hàm Bằng định Nghĩa Hay, Chi Tiết - Toán Lớp 11
Có thể bạn quan tâm
- Giảm giá 50% sách VietJack đánh giá năng lực các trường trên Shopee Mall
Bài viết Phương pháp tính đạo hàm bằng định nghĩa với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp tính đạo hàm bằng định nghĩa.
- Cách giải và ví dụ minh họa bài tập tính đạo hàm bằng định nghĩa
- Bài tập vận dụng tính đạo hàm bằng định nghĩa
- Bài tập tự luyện tính đạo hàm bằng định nghĩa
Phương pháp tính đạo hàm bằng định nghĩa (hay, chi tiết)
A. Phương pháp giải & Ví dụ
Quảng cáo1. Định nghĩa đạo hàm tại một điểm
Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 ∈ (a; b). Nếu tồn tại giới hạn (hữu hạn)
thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại x0 và kí hiệu là f’(x0) (hoặc y’(x0)), tức là
Chú ý:
Đại lượng Δx = x – x0 gọi là số gia của đối số x tại x0.
Đại lượng Δy = f(x) – f(x0) = f(x0 + Δx) – f(x0) được gọi là số gia tương ứng của hàm số. Như vậy
2. Cách tính đạo hàm bằng định nghĩa
Bước 1. Giả sử Δx là số gia của đối số x tại x0, tính Δy = f(x0 + Δx) – f(x0).
Chú ý: Trong định nghĩa trên đây, thay xo bởi x ta sẽ có định nghĩa và quy tắc tính đạo hàm của hàm số y = f(x) tại điểm x ∈ (a, b)
Ví dụ minh họa
Bài 1: Cho hàm số có Δx là số gia của đối số tại x = 2. Khi đó bằng bao nhiêu?
Hướng dẫn:
Tập xác định của hàm số đã cho là D = [2/3; +∞)
Với Δx là số gia của đối số tại x = 2 sao cho 2 + Δx ∈ D, thì
Bài 2: Cho hàm số f(x) = 3x + 5.Tính đạo hàm của hàm số đã cho bằng định nghĩa.
Quảng cáoHướng dẫn:
Tập xác định của hàm số đã cho là D = R
Ta có Δy = 3(x+Δx) + 5 - 3x - 5 = 3Δx
Khi đó:
Bài 3: Cho hàm số
Đạo hàm của hàm số đã cho tại x = 1?
Hướng dẫn:
với Δx là số gia của đối số tại x = 1, ta có
Bài 4: Tính đạo hàm của các hàm số sau tại các điểm đã cho: f(x)= 2x3 + 1 tại x = 2
Hướng dẫn:
Ta có
Bài 5: Tính đạo hàm của các hàm số sau tại các điểm đã cho:
Hướng dẫn:
Ta có
Bài 6: Tính đạo hàm của hàm số:
Hướng dẫn:
Ta có f(0) = 0, do đó:
Quảng cáoBài 7: Tính đạo hàm của hàm số bằng định nghĩa
Hướng dẫn:
Tập xác định của hàm số đã cho là D = R\{-1}
Ta có
B. Bài tập vận dụng
Bài 1: Cho hàm số f(x) = x2 + 2x, có Δx là số gia của đối số tại x = 1, Δy là số gia tương ứng của hàm số. Khi đó Δy bằng:
A. (Δx)2 + 2Δx
B. (Δx)2 + 4Δx
C. (Δx)2 + 2Δx - 3
D. 3
Lời giải:
Đáp án: B
Δy = f(1 + Δx) - f(1) = (1 + Δx)2 + 2(1 + Δx) - (1 + 2) = (Δx)2 + 4Δx
Đáp án B
Bài 2: Cho hàm số
Đạo hàm của hàm số đã cho tại x = 1 là:
A. 1/4 B. -1/2 C. 0 D. 1/2
Lời giải:
Đáp án: A
với Δx là số gia của đối số tại x = 1, ta có
Đáp án A
Quảng cáoBài 3: Cho hàm số f(x) = |x + 1|. Khẳng định nào sau đây là sai?
A. f(x) liên tục tại x = -1
B. f(x) có đạo hàm tại x = -1
C. f(-1) = 0
D. f(x) đạt giá trị nhỏ nhất tại x = -1
Lời giải:
Đáp án: B
Suy ra không tồn tại giới hạn của tỉ số khi x → -1
Do đó hàm số đã cho không có đạo hàm tại x = -1
Vậy chọn đáp án là B
Bài 4: Số gia của hàm số f(x) = 2x2 - 1 tại x0 = 1 ứng với số gia Δx = 0,1 bằng:
A. 1
B. 1,42
C. 2,02
D. 0,42
Lời giải:
Đáp án: B
chọn đáp án là B
Bài 5: Cho hàm số y = √x, Δx là số gia của đối số tại x. Khi đó Δy/Δx bằng:
Lời giải:
Đáp án: C
Δy = f(x0 + Δx) - f(x0)
Vậy chọn đáp án là C
Bài 6: Cho hàm số
Đạo hàm của hàm số đã cho tại x = 1?
A. 1 B. 0 C. 1/4 D. -1/4
Lời giải:
Đáp án: C
Ta có
Vậy chọn đáp án là C
Bài 7: Đạo hàm của các hàm số sau tại các điểm đã cho: f(x) = 2x3 + 1 tại x = 2?
A. 10
B. 24
C. 22
D. 42
Lời giải:
Đáp án: B
Ta có
Vậy chọn đáp án là B
Bài 8: Đạo hàm của các hàm số sau tại các điểm đã cho:
A. 1/2 B. -1/√2 C. 0 D. 3
Lời giải:
Đáp án: A
Ta có f(0) = 0, do đó:
Vậy chọn đáp án là A
Bài 9: Hàm số có Δx là số gia của đối số tại x = 2. Khi đó Δy/Δx bằng?
Lời giải:
Đáp án: A
Vậy chọn đáp án là A
Bài 10: Đạo hàm của các hàm số sau tại các điểm đã cho: f(x) = x2 + 1 tại x = 1?
A. 1/2 B. 1 C. 0 D. 2
Lời giải:
Đáp án: D
Vậy chọn đáp án là D
C. Bài tập tự luyện
Bài 1. Cho hàm số f(x) = 2x2 + x + 1. Hãy tính f'(2) theo phương pháp tính đạo hàm bằng định nghĩa.
Bài 2. Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:
a) y = x2 + x tại x0 = 5.
b) y = 1x tại x0 = -3.
Bài 3. Cho hàm số: y = x−5x≥1x2−2x+1x−1x<1. Tính đạo hàm của hàm số tại x0 = 1.
Bài 4. Cho hàm số: f(x) = 3−4−x4x≠014x=0. Khi đó f’(0) là kết quả nào?
Bài 5. Tìm a; b để hàm số y = f(x) = x2+3x≥1ax+bx<1 có đạo hàm tại x = 1.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Dạng 2: Tính đạo hàm bằng công thức
- Dạng 3: Tính đạo hàm của hàm số lượng giác
- 60 bài tập trắc nghiệm Đạo hàm có đáp án (phần 1)
- 60 bài tập trắc nghiệm Đạo hàm có đáp án (phần 2)
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
- 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )
ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11
Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Từ khóa » Cách Tính F'(x0)
-
Công Thức, Cách Tính Đạo Hàm Theo định Nghĩa Và Mối Liên Hệ Giữa ...
-
Toán Đại 11 Công Thức Và Cách Tính Đạo Hàm Chi Tiết Nhất
-
Cách Tính đạo Hàm Tại 1 điểm Hay, Chi Tiết - Toán Lớp 11
-
Giải Toán 11 Bài 1. Định Nghĩa Và ý Nghĩa Của đạo Hàm - Giải Bài Tập
-
Tính đạo Hàm Bằng định Nghĩa
-
Tất Tần Tật Công Thức đạo Hàm - Cách Tính đạo Hàm Bằng Máy Tính
-
Tổng Hợp Các Dạng Bài Tập đạo Hàm (2018) - Minh Nguyen
-
Mối Liên Hệ Giữa đạo Hàm Và Tính Liên Tục - Để Học Tốt
-
PHƯƠNG PHÁP GIẢI BÀI TOÁN VIẾT PHƯƠNG TRÌNH TIẾP TUYẾN
-
Bài 1: Định Nghĩa Và ý Nghĩa Của đạo Hàm - Hoc24
-
Tính đạo Hàm Bằng định Nghĩa
-
Công Thức Tính đạo Hàm đầy đủ
-
Bảng đạo Hàm Cơ Bản Và Nâng Cao đầy đủ Nhất
-
Định Nghĩa, ý Nghĩa, Công Thức Tính đạo Hàm - Abcdonline