Phương Pháp Tọa độ Trong Mặt Phẳng Phương Trình đường Thẳng

Tải bản đầy đủ (.pdf) (21 trang)
  1. Trang chủ
  2. >>
  3. Giáo Dục - Đào Tạo
  4. >>
  5. Trung học cơ sở - phổ thông
Phương pháp tọa độ trong mặt phẳng phương trình đường thẳng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (681.96 KB, 21 trang )

PHƢƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNGPHƢƠNG TRÌNH ĐƢỜNG THẲNGund1. Các khái niệm cần học trƣớc khi đọc tài liệu:- Để làm được toán trong chương này, các em cần hiểu rõ khái niệm vecto chỉ phương( vecto cùngphương với đường thẳng 𝑢) và pháp tuyến ( vecto phương vuông góc đường thẳng 𝑛) .- Khi viết phương trình đường thẳng, ta phải biết một điểm đi qua và vecto pháp tuyến ( hoặc chỉ phương)- Nếu đường thẳng viết dưới dạng ax+by+c=0 thì vecto pháp tuyến là 𝑛 𝑎; 𝑏 còn vtcp 𝑢 −𝑏; 𝑎 hoặc𝑢 𝑏; −𝑎- Trong phương trình tổng quát ta sử dụng vecto pháp tuyến, phương trình chính tắc và tham số sử dụngvecto chỉ phương.2. Phƣơng trình tham số của đƣờng thẳng:Đường thẳng  đi qua M0 ( x0 ; y0 ) và có VTCP u  (u1; u2 )Phương trình tham số của : x  x0  tu1 y  y0  tu2(1)( t là tham số).3. Phƣơng trình chính tắc của đƣờng thẳng:Đường thẳng  đi qua M0 ( x0 ; y0 ) và có VTCP u  (u1; u2 ) .Phương trình chính tắc của :x  x0 y  y0u1u2(2) (u1  0, u2  0).4. Phƣơng trình tổng quát của đƣờng thẳng: ax  by  c  0 với a2  b2  0 với VTPT là n  (a; b)CHUYÊN ĐỂ 1:Chuyển đổi qua lại giữa các phương trình đường thẳng*) Chuyển phương trình đường thẳng từ dạng tổng quát ax+by+c=0 về tham số, chính tắc:Phƣơng pháp:Cách 1: Tìm vtpt 𝑛 𝑎; 𝑏 ⇒ 𝑣𝑡𝑐𝑝 𝑢 −𝑏; 𝑎Tìm điểm đi qua 𝑀 𝑥0 ; 𝑦0 ( bằng cách cho trước 1 giá trị, rồi tính giá trị còn lại theo giá trị vừa cho)Cách 2: Đặt 𝑥 = 𝑓 𝑡 hoặc 𝑦 = 𝑓 𝑓 rồi rút ẩn còn lại theo t để đưa về dạng tham số.Bài 1. Cho phương trình đường thẳng 2x+ 3y = 6. Hãy chuyển phương trình trên về dạng tham số, chínhtắc.Trang 1 HD:Cách 1: Tìm vtcp và một điểm đi qua, rồi thay vào phƣơng trình chính tắc và tham sốTa có: vtpt 𝑛 2; 3 ⇒ 𝑣𝑡𝑐𝑝 𝑢 −3; 2 .Cho x = 0 suy ra y = 2.𝑥 = 0 − 3𝑡; 𝑡∈𝑅𝑦 = 2 + 2𝑡Phương trình tham số là:Phương trình chính tắc :𝑥−0−3=𝑦−22Cách 2: Đặt x hoặc y theo một biểu thức chứa t ( các em có thể đặt x = 2t; t-1….tùy thích) . Rút ẩncịn lại theo t ta đƣợc phƣơng trình tham số, rồi từ tham số chuyển về chính tắc82Đặt x = t-1 suy ra 2(t-1) +3y = 6 ⇒ 𝑦 = 3 − 3 𝑡𝑥 = −1 + 𝑡Vậy phương trình tham số là: 𝑦 = 8 − 2 𝑡 ; 𝑡 ∈ 𝑅33Phương trình chính tắc là:𝑥+11=832−3𝑦−*) Chuyển phương trình đường thẳng từ dạng tham số, chính tắc về dạng tổng quátPhƣơng pháp:Cách 1: Tìm 𝑣𝑡𝑐𝑝𝑢 ⇒ 𝑣𝑡𝑝𝑡𝑛 .Tìm điểm đi qua 𝑀 𝑥0 ; 𝑦0 rồi thay vào phương trình tổng quát:𝒂 𝒙 − 𝒙 𝟎 + 𝒃 𝒚 − 𝒚𝟎 = 𝟎Cách 2: Khử t ở phương trình tham số:Bài 2. Chuyển phương trình đường thẳng sau về dạng tổng quát:𝑥 = 1 + 2𝑡; 𝑡∈𝑅𝑦 = −2 + 5𝑡HD:a)b)𝑥−3−1=𝑦+23a) Cách 1: 𝑣𝑡𝑐𝑝 𝑢 2; 5 ⇒ 𝑣𝑡𝑝𝑡 𝑛 −5; 2 ; 𝑐𝑕𝑜 𝑡 = 0 𝑠𝑢𝑦 𝑟𝑎 𝑥 = 1; 𝑦 = −2 ⇒ 𝑀 1; −2⇒ PTTQ: −5 𝑥 − 1 + 2 𝑦 + 2 = 0 ⇒ −5𝑥 + 2𝑦 + 9 = 0Cách 2:𝑥−1𝑡= 2𝑥 = 1 + 2𝑡𝑥−1𝑦+2⇒𝑦+2 ⇒ 2 = 5 ⇒ 5 𝑥 − 1 = 2 𝑦 + 2 ⇒ −5𝑥 + 2𝑦 + 9 = 0𝑦 = −2 + 5𝑡𝑡= 5b)𝑥−3−1=𝑦+23Cách 1: 𝑣𝑡𝑐𝑝 𝑢 −1; 3 ⇒ 𝑣𝑡𝑝𝑡 𝑛 3; 1 ; 𝑀 3; −2⇒ 𝑃𝑇𝑇𝑄: 3 𝑥 − 3 + 1 𝑦 + 2 = 0 ⇒ 3𝑥 + 𝑦 − 7 = 0Cách 2:𝑥−3−1=𝑦 +23⇔ 3 𝑥 − 3 = −1 𝑦 + 2 ⇔ 3𝑥 + 𝑦 − 7 = 0CHUYÊN ĐỀ 2:Lập phƣơng trình đƣờng thẳng2 Lập phƣơng trình đƣờng thẳng biết một điểm đi qua và vec tơ pháp tuyến ( hoặc chỉ phƣơng)Phƣơng pháp: Để lập phương trình tham số và phương trình chính tắc của đường thẳng  ta cần xác định mộtđiểm M0 ( x0 ; y0 )   và một VTCP u  (u1; u2 ) của .x  x 0 y  y0 x  x0  tu1PTTS của : ; PTCT của :u1u2 y  y0  tu2(u1  0, u2  0). Để lập phương trình tổng quát của đường thẳng  ta cần xác định một điểm M0 ( x0 ; y0 )   vàmột VTPT n  (a; b) của . PTTQ của : a( x  x0 )  b(y  y0 )  0Chú ý trong PTTS và PTCT dùng vecto chỉ phƣơng, PTTQ dùng vecto pháp tuyến.Baøi 1. Lập PTTS, PTCT (nếu có), PTTQ của đường thẳng đi qua điểm M(-2;3) và có VTCP u  (5; 1)HD:x = x0 + at = −2 + 5t;t ∈ Ry = y0 + bt = 3 − tPhương trình tham số của đt là:Phương trình chính tắc:x − x0 𝑦 − 𝑦0 𝑥 + 2 𝑦 − 3=⇒=𝑎𝑏5−1Phương trình tổng qt:Ta có: 𝑢 5; −1 ⇒ 𝑛 1; 5 ; 𝑀 −2; 3 ⇒ 1 𝑥 + 2 + 5 𝑦 − 3 = 0 ⇔ 𝑥 + 5𝑦 − 13 = 0Baøi 2. Lập PTTS, PTCT (nếu có), PTTQ của đường thẳng đi qua điểm M(-2;3) và có VTPT n  (5; 1)HD:n 5; −1⇒ PTTQ: 5 x + 2 − 1 y − 3 = 0 ⇒ 5x − y + 13 = 0M −2; 3Vì n 5; −1 ⇒ u 1; 5 ; M −2; 3 nên:𝑥 = −2 + 𝑡Phương trình tham số:;𝑡 ∈ 𝑅𝑦 = 3 + 5𝑡Ta có đường thẳng d :Phương trình chính tắc:𝑥+21=𝑦 −35Lập phƣơng trình đƣờng thẳng qua 1 điểm và biết hệ số góc k.Phƣơng pháp: Sử dụng cơng thức phương trình đường thẳng qua điểm 𝑀 𝑥0 ; 𝑦0 có hệ số góc k là:𝑦 = 𝑘 𝑥 − 𝑥0 + 𝑦0Bài 3. Lập PTTS, PTCT (nếu có), PTTQ của đường thẳng đi qua điểm M(-3;1) và có hệ số góc k= -2HD:a) Phương trình tổng quát của đường thẳng là: 𝑦 = −2 𝑥 + 3 + 1 ⇒ 𝑦 = −2𝑥 − 5Từ phương trình tổng quát trên, các em dùng Chuyên đề 1 để chuyển về tham số và chính tắc.Trang 3 Lập phƣơng trình đƣờng thẳng đi qua 2 điểm A và B:+  đi qua hai điểm A( x A ; y A ) , B( xB ; yB ) (với x A  xB , yA  yB ):PT của :x  xAy  yAx B  x A yB  y A+  đi qua hai điểm A(a; 0), B(0; b) (a, b  0): PT của :x y  1.a bBaøi 4. Lập PTTS, PTCT ,PTTQ của đường thẳng đi qua hai điểm A(-2;4), B(1;0)HD:𝑥 −𝑥 1Sử dụng cơng thức phương trình đường thẳng qua hai điểm 𝐴 𝑥1 ; 𝑦1 ; 𝐵 𝑥2 ; 𝑦2 là: 𝑥Phương trình chính tắc của đường thẳng AB là:𝑥+21+2=𝑦 −40−4⇔𝑥+23=2 −𝑥 1𝑦−𝑦 1=𝑦2 −𝑦 1𝑦 −4−4Từ phương trình chính tắc trên, các em tự chuyển về dạng tổng quát và tham số như chuyên đề 1.Lập phƣơng trình đƣờng thẳng qua 1 điểm và song song, vng góc với đƣờng thẳng d.Phƣơng pháp: Hai đường thẳng song song có cùng vecto chỉ phương và vecto pháp tuyến. Sau đóchuyển bài toán về viết ptđt biết điểm đi qua và vtpt ( vtcp)Cách giải nhanh: Cho d: ax+by +c = 0- Đường thẳng song song với d có dạng: ax+by+d = 0(d≠c). Thay tọa độ điểm đi qua tìm d- Đường thẳng vng góc với d có dạng: bx-ay +e = 0. Thay tọa độ điểm đi qua tìm eMd'Mnuddd'Bài 5. Viết PTTS, PTCT (nếu có), PTTQ của đường thẳng đi qua điểm M(2;3) và song song với đườngthẳng d: 4x-10y+1=0HD:Cách 1: (d): 4x-10y+1=0 nên vtpt n 4; −10Gọi đường thẳng cần tìm là d’ . Vì d’ // d nên 𝑛𝑑′ = 𝑛 4; −10𝑄𝑢𝑎 𝑀 2; 3Phương trình đường thẳng d’ :là: 4 𝑥 − 2 − 10 𝑦 − 3 = 0 ⇒ 4𝑥 − 10𝑦 + 22 = 0𝑛 4; −10Cách 2: Đường thẳng d’ song song với 4x-10y+1 =0 có dạng: 4x-10y+c=0 (c ≠1)Vì (d’) qua M(2;3) nên 4.2-10.3 +c =0 ⇒ 𝑐 = 22(𝑡𝑚) ⇒ 𝑑 ′ : 4𝑥 − 10𝑦 + 22 = 0Từ PTTQ, các em chuyển về tham số, chính tắc.Bài 6. Viết PTTS, PTCT (nếu có), PTTQ của đường thẳng đi qua điểm M(2;3) và vng góc với đường4 thẳng d: 4x-10y+1=0HD:Cách 1:(d): 4x-10y+1=0 nên vtpt n 4; −10Gọi đường thẳng cần tìm là d’ . Vì d’ vng góc d nên 𝑢𝑑′ = 𝑛 4; −10𝑄𝑢𝑎 𝑀 2; 3Phương trình đường thẳng d’ :là:𝑢 4; −10𝑥 = 2 + 4𝑡; 𝑡∈𝑅𝑦 = 3 − 10𝑡Cách 2: Đường thẳng d’ vng góc với d :4x-10y+1=0 có dạng: 10x+4y+c= 0.Vì M(2;3) thuộc d’ nên 10.2+4.3+c = 0 ⇒ 𝑐 = −32 ⇒ 𝑑 ′ : 10𝑥 + 4𝑦 − 32 = 0Từ phương trình tham số trên, các em tự viết về phương trình tổng qt và chính tắc ( xem Chuyên đề 1)Baøi 7. Cho tam giác ABC. Viết phương trình các cạnh, các đường trung tuyến, các đường cao của tamgiác với: A(2; 0), B(2; –3), C(0; –1)HD: Sử dụng công thức viết ptđt đi qua 2 điểm.A(2;0)M(2;-1,5)HC(0;-1)B(2;-3)𝑄𝑢𝑎 𝐴(2; 0)là x=2 .𝑄𝑢𝑎 𝐵 2; −3𝑄𝑢𝑎 𝐶(0; −1)𝑥−0𝑦+1𝑥𝑦+1Phương trình BC:là: 2−0 = −3+1 ⇒ 2 = −2 ⇒ 𝑥 + 𝑦 + 1 = 0𝑄𝑢𝑎 𝐵 2; −3𝑄𝑢𝑎 𝐶(0; −1)𝑥−0𝑦+1𝑥𝑦 +1Phương trình AC:là: 2−0 = 0+1 ⇒ 2 = 1 ⇒ 𝑥 − 2𝑦 − 2 = 0𝑄𝑢𝑎 𝐴 2; 0Phương trình AB:3Gọi M là trung điểm AB suy ra 𝑀 2; − 2 .3Phương trình đường trung tuyến CM :𝑄𝑢𝑎 𝑀(2; − 2)𝑄𝑢𝑎 𝐴 0; −1𝑥−2là: 0−2 =323−1+2𝑦+⇔ 𝑥 + 4𝑦 + 4 = 0Đường cao từ C đi qua C(0;-1) và nhận 𝐴𝐵 0; −3 là vtpt nên phương trình đường cao CH là:𝑄𝑢𝑎 𝐶 0; −1⇒ 0. 𝑥 − 0 + 3 𝑦 + 1 = 0 ⇔ 𝑦 + 1 = 0𝑛 0; 3Tương tự các đường trung tuyến, đường cao cịn lại.Bài 8. Cho tam giác ABC, biết phương trình ba cạnh của tam giác. Viết phương trình các đường cao củatam giác, với: AB : 2 x  3y  1  0, BC : x  3y  7  0, CA : 5x  2y  1  0Trang 5 HD: Các em tìm tọa độ 3 đỉnh, rồi viết đường cao.A2x-3y-1=05x-2y+1=0nABHCx+3y+7=0BAC giao BC tại C nên tọa độ giao điểm C là nghiệm hệ phương trình:𝑥 + 3𝑦 + 7 = 0𝑥 = −1⇒⇒ 𝐶 −1; −2𝑦 = −25𝑥 − 2𝑦 + 1 = 0AB: 2x-3y-1=0 nên 𝑛𝐴𝐵 = 2; −3Vì CH vng góc AB nên vtpt của AB là vtcp của CH ⇒ 𝑢𝐻𝐶 = 𝑛𝐴𝐵 = 2; −3𝑞𝑢𝑎 𝐶 −1; −2𝑥 = −1 + 2𝑡Đường cao CH:⇒ 𝑃𝑇 𝐶𝐻 :;𝑡 ∈ 𝑅𝑦 = −2 − 3𝑡𝑣𝑡𝑐𝑝 𝑢 2; −3Cách khác: Đường cao CH vng góc AB: 2x-3y-1=0 có dạng: 3x+2y+c=0.Vì CH qua C(-1;-2) nên 3.(-1)-4 +c=0 suy ra c= 7. Vậy CH : 3x+2y+7=0Các đường cao còn lại viết tương tự.Bài 9. Viết phương trình các cạnh và các trung trực của tam giác ABC biết trung điểm của các cạnh BC,CA, AB lần lượt là các điểm M, N, P, với: M(–1; –1), N(1; 9), P(9; 1)HD:ANPMBCCách 1:𝑥𝐴 + 𝑥𝐵 = 18𝑥𝐴 = 11Ta có: 𝑥𝐵 + 𝑥𝐶 = −2 ⇒ 2 𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 = 18 𝐶ộ𝑛𝑔 𝑡𝑕𝑒𝑜 𝑣ế ⇒ 𝑥𝐵 = 7𝑥𝐶 = −9𝑥𝐴 + 𝑥𝐶 = 2𝑦𝐴 = 11𝑦Tương tự ta tìm được: 𝐵 = −9 ⇒ 𝐴 11; 11 ; 𝐵 7; −9 ; 𝐶 −9; 7 .𝑦𝐶 = 7Từ đó viết phương trình các cạnh và trung trực các cạnh.6 Cách 2: Ta có: 𝑃𝑁 −8; 8 = −8 1; −1Vì PN//BC nên 𝑢𝑃𝑁 = 𝑢𝐵𝐶 = 𝑃𝑁 1; −1 .𝑄𝑢𝑎 𝑀 −1; −1𝑥 = −1 + 𝑡Đường thẳng BC :⇒ 𝑃𝑇 𝐵𝐶 :; 𝑡∈𝑅𝑦= −1 − 𝑡𝑣𝑡𝑐𝑝 𝑢 1; −1Đường trung trực BC nhận 𝑢𝐵𝐶 1; −1 làm vtpt và đi qua M(-1;-1) nên phương trình trung trực BC là:1 𝑥+1 −1 𝑦+1 = 0⇒𝑥−𝑦 =0Các ý khác tương tự.Bài 10. Viết phương trình đường thẳng đi qua điểm M(-4;10) và chắn trên hai trục toạ độ 2 đoạn bằngnhauHD:Đường thẳng đi qua hai điểm A(a; 0), B(0; b) (a, b  0) có PT là (d) :4Vì (d) qua M(-4;10) nên − 𝑎 +10𝑏x y  1.a b= 1.Vì (d) chắn trên hai trục tọa độ hai đoạn bằng nhau nên 𝑎 = 𝑏 ⇒ 𝑎 = ±𝑏𝑎=𝑏𝑥𝑦TH1: − 4 + 10 = 1 ⇒ 𝑎 = 𝑏 = 6 ⇒ 𝑑 : 6 + 6 = 1 ⇒ 𝑥 + 𝑦 = 6𝑎𝑏𝑎 = −𝑏𝑎 = −14TH2: − 4 + 10 = 1 ⇒⇒ 𝑑 : − 𝑥 + 𝑦 = 14𝑏 = 14𝑎𝑏Baøi 11. Viết phương trình đường thẳng đi qua điểm M(-4;10) và cùng với hai trục toạ độ tạo thành mộttam giác có diện tích S=2HD:a) Đường thẳng đi qua hai điểm A(a; 0), B(0; b) (a, b  0) có PT là (d) :4Vì (d) qua M(-4;10) nên − 𝑎 +10𝑏x y  1.a b= 1.Vì (d) chắn trên hai trục tọa độ một tam giác có diện tích bằng 2 nên1𝑎𝑏 = 4𝑎. 𝑏 = 2 ⇔ 𝑎𝑏 = 4 ⇒2𝑎𝑏 = −4𝑎𝑏 = 4𝑎=TH1: − 4 + 10 = 1 ⇒⇒ 𝑑𝑏=𝑎𝑏𝑎𝑏 = −4𝑎=TH2: − 4 + 10 = 1 ⇒⇒ 𝑑 :𝑏=𝑎𝑏( Các em rút a hoặc b ở phương trình dưới, thay vào phương trình trên)Tìm hình chiếu của điểm M lên đƣờng thẳng d, tìm điểm M’ đối xứng với M qua d.Trang 7 MdHM'* Tìm hình chiếu H của M lên đường thẳng d:Cách 1:Viết phương trình đường thẳng  qua M và vng góc với d.– Xác định H = d   ( bằng cách giải hệ phương trình)Cách 2: Chuyển phương trình d về dạng tham số, suy ra tọa độ H theo tTa có: MH vng góc với d nên 𝑀𝐻 . 𝑢 = 0 ⇒ 𝑡 ⇒ 𝐻*Để tìm điểm M’ đối xứng với M qua d. Ta tìm hình chiếu H, rồi sử dụng tính chất H là trung điểmMM’:Bài 12. Tìm hình chiếu của điểm M(2;1) lên đường thẳng d :2x+y-3=0 và điểm M đối xứng với M quađường thẳng dHD:M(2;1)d: 2x+y-3=0HM'Cách 1: Đường thẳng (∆) vng góc với (d) có dạng: x-2y+c = 0Vì (d’) qua M(2;1) nên 2-2.1+c= 0 ⇒ 𝑐 = 0 ⇒ 𝑑 ′ : 𝑥 − 2𝑦 = 0Điểm A là hình chiếu của M lên (d) có tọa độ là nghiệm của hệ phương trình:6𝑥=𝑥 − 2𝑦 = 05 ⇒ 𝐴 6;3⇒32𝑥 + 𝑦 − 3 = 05 5𝑦=5M’ đối xứng với M qua d nên A là trung điểm MM’.2𝑥=𝑀′𝑥𝑀 + 𝑥𝑀′ = 2𝑥𝐴5 ⇒ 𝑀′ 2 ; 1⇒𝑦𝑀 + 𝑦𝑀′ = 2𝑦𝐴15 5𝑦𝑀′ =5𝑥=𝑡Cách 2: Phương trình tham số của (d): 𝑦 = 3 − 2𝑡8 Gọi A là hình chiếu của M lên d. A thuộc d nên A(t;3-2t) và 𝑀𝐴 𝑡 − 2; 2 − 2𝑡 ; 𝑢𝑑 −1; 26Vì 𝑀𝐴 vng góc d nên 𝑀𝐴. 𝑢𝑑 = 0 ⇔ −1 𝑡 − 2 + 2 2 − 2𝑡 = 0 ⇔ 𝑡 = 5 ⇒ 𝐴6 3;5 5⇒ 𝑀′2 1;5 5Lập phƣơng trình đƣờng thẳng d’ đối xứng với đƣờng thẳng d qua đƣờng thẳng ∆– Nếu d // :+ Lấy A  d. Xác định A đối xứng với A qua .+ Viết phương trình đường thẳng d qua A và song song với d.– Nếu d   = I:+ Lấy A  d (A  I). Xác định A đối xứng với A qua .+ Viết phương trình đường thẳng d qua A và I.dA'AId'd'HA'dABài 13. Lập phương trình đường thẳng d đối xứng với đường thẳng d qua đường thẳng , với:d : 2 x  y  1  0,  : 3x  4y  2  0HD:a) Vì23≠14nên hai đường thẳng cắt nhau. Tọa độ giao điểm I của hai đường thẳng là nghiệm của hệ2𝑥 = −52𝑥 − 𝑦 + 1 = 02 1phương trình:⇒1 ⇒ 𝐼 −5;53𝑥 − 4𝑦 + 2 = 0𝑦=5Lấy A(0;1) thuộc d. đường thẳng (d’’) qua A và vng góc với ∆: 3𝑥 − 4𝑦 + 2 = 0 có dạng4x+3y +c = 0. Vì A(0;1) thuộc d’’ nên 4.0+3.1+c = 0 ⇒ 𝑐 = −3 ⇒ 𝑑 ′′ : 4𝑥 + 3𝑦 − 3 = 0dAHd'IA'd''H là giao ∆ và d’’ nên tọa độ H là nghiệm của hệ phương trình:⇒12 9𝐴′ 25 ; 25. Phương trình đường thẳng d’ qua :𝐴′12;925 252 1𝐼 −5;5Trang 93𝑥 − 4𝑦 + 2 = 0⇒𝐻4𝑥 + 3𝑦 − 3 = 0⇒ 𝑃𝑇 𝑑′ :12252 12− −5 25𝑥−=9251 9−5 25𝑦−617;25 25 Lập phƣơng trình đƣờng thẳng d’ đối xứng với đƣờng thẳng d qua điểm I:– Lấy A  d. Xác định A đối xứng với A qua I.– Viết phương trình đường thẳng d qua A và song song với d.A'd'IdABài 14. Lập phương trình đường thẳng d đối xứng với đường thẳng d: 2x-y+1=0 qua điểm I(2;1)HD:Lấy A(0;1) thuộc d. ( điểm A các em có thể lấy bất kỳ bằng cách cho x bằng một giá trị rồi tìm y)A’ đối xứng với A qua I nên A’(4;1) .Đường thẳng d’ song song với d nên có vtpt: 𝑛 2; −1𝑄𝑢𝑎 𝐴′ 4; 1d’:⇒ 𝑑 ′ : 2 𝑥 − 4 − 1 𝑦 − 1 = 0 ⇒ 2𝑥 − 𝑦 − 7 = 0𝑣𝑡𝑝𝑡 𝑛 2; −1CHUYÊN ĐỀ 3Các bài toán dựng tam giácDựng tam giác ABC, khi biết các đƣờng thẳng chứa cạnh BC và hai đƣờng cao BB, CC.Cách dựng:– Xác định B = BC  BB, C = BC  CC.– Dựng AB qua B và vng góc với CC.– Dựng AC qua C và vng góc với BB.– Xác định A = AB  AC.Baøi 1. Cho tam giác ABC, biết phương trình một cạnh và hai đường cao. Viết phương trình hai cạnh vàđường cao còn lại, với: BC: 4x+y-12=0;BB’: 5x-4y-15=0; CC’: 2x+2y-9=0HD:2x+2y-9=0A5x-4y-15=0B(3;0) 4x+y-12=0C(2,5;2)BC giao BB’ tại B nên tọa độ điểm B là nghiệm hệ phương trình:4x + y − 12 = 0x=3⇒⇒ B 3; 0y=05x − 4y − 15 = 010 54𝑥 + 𝑦 − 12 = 0𝑥=2Tương tự: Tọa độ C là nghiệm hệ phương trình:⇒⇒𝐶2𝑥 + 2𝑦 − 9 = 0𝑦=252;2Lúc này, phương trình AB sẽ vng góc với CC’ và đi qua B. Bài toán trở về viết phương trình đườngthẳng qua 1 điểm và vng góc với một đường thẳng.AB vng góc CC’: 2x+2y-9 =0 nên phương trình AB có dạng: x-y+c = 0Vì B(3;0) thuộc AB nên 3-0+c = 0 ⇒ 𝑐 = −3 ⇒ 𝐴𝐵: 𝑥 − 𝑦 − 3 = 0AC vng góc với BB;: 5x-4y-15=0 nên phương trình AC có dạng: 4x+5y+d=0Vì 𝐶52; 2 thuộc AC nên4.52+ 5.2 + 𝑑 = 0 ⇒ 𝑑 = −20 ⇒ 𝐴𝐶: 4𝑥 + 5𝑦 − 20 = 0Dựng tam giác ABC, khi biết đỉnh A và hai đƣờng thẳng chứa hai đƣờng cao BB, CCCách dựng:– Dựng AB qua A và vng góc với CC.– Dựng AC qua A và vng góc với BB.– Xác định B = AB  BB, C = AC  CC.Baøi 2. Cho tam giác ABC, biết toạ độ một đỉnh và phương trình hai đường cao. Viết phương trình cáccạnh của tam giác đó, với:A(3;0), BB : 2 x  2 y  9  0, CC : 3x  12 y  1  0HD:A(3;0)2x+2y-9=03x-12y-1=0BCAC vng góc với BB’: 2x+2y-9=0 nên phương trình AC có dạng: x-y+c = 0Vì A 3;0 thuộc AC nên 3-0+c=0 ⇒ c = −3 ⇒ AC: x − y − 3 = 0Vì AB vng góc CC’: 3x-12y-1=0 nên phương trình AB có dạng: 12x+3y+d=0A(3;0) thuộc AB nên 12.3+3.0+d=0 ⇒ 𝑑 = −36 ⇒ 𝐴𝐵: 12𝑥 + 3𝑦 − 36 = 0 hay 4x+y-12=035𝑥= 9𝑥−𝑦−3 =0AC giao CC’ tại C nên tọa độ C là nghiệm hệ phương trình:⇒8 ⇒ 𝐶3𝑥 − 12𝑦 − 1 = 0𝑦=95AB giao BB’ tại B nên tọa độ B là nghiệm hệ phương trình:Phương trình đường thẳng BC qua 𝐵5;2 ;𝐶225 895𝑥−225 59 −22𝑥 + 2𝑦 − 9 = 0𝑥=2⇒⇒𝐵4𝑥 + 𝑦 − 12 = 0𝑦=2;9là:=𝑦−2⇒89−2Trang 1125 8952;2;9 Dựng tam giác ABC, khi biết đỉnh A và hai đƣờng thẳng chứa hai đƣờng trung tuyến BM, CN.Cách dựng:– Xác định trọng tâm G = BM  CN.– Xác định A đối xứng với A qua G (suy ra BA // CN, CA // BM).– Dựng dB qua A và song song với CN.– Dựng dC qua A và song song với BM.– Xác định B = BM  dB, C = CN  dC.Baøi 3. Cho tam giác ABC, biết toạ độ một đỉnh và phương trình hai đường trung tuyến. Viết phươngtrình các cạnh của tam giác đó, với: A(1;3), BM : x  2y  1  0, CN : y  1  0HD:A(1;3)x-2y+1=0y-1=0MGNBCA'Tọa độ trọng tâm G của tam giác ABC là nghiệm của hệ phương trình:𝑥 − 2𝑦 + 1 = 0𝑥=1⇒⇒ 𝐺 1; 1𝑦=1𝑦−1=0Gọi A’ đối xứng với A qua G suy ra 𝐴′ 1; −1 . BGCA’ là hình bình hành ( có hai đường chép cắt nhautại trung điểm mỗi đường) nên BM//AC’; CN//A’B.Phương trình đường thẳng A’C song song với BM: x-2y+1=0 nên A’C có dạng: x-2y+c=0 (c ≠ 1)Vì A’C qua A’(1;-1) nên 1 + 2 + 𝑐 = 3 ⇒ 𝑐 = −3 𝑡𝑚 ⇒ 𝐴′ 𝐶: 𝑥 − 2𝑦 − 3 = 0A’B //CN” y-1=0 nên phương trình A’B có dạng: y+ d =0 (d ≠ -1)A’B qua A’(1;-1) nên -1+d = 0 ⇒ 𝑑 = 1 ⇒ 𝐴′ 𝐵: 𝑦 + 1 = 0𝑦+1=0Tọa độ B là nghiệm của hệ phương trình:⇒ 𝐵 −3; −1𝑥 − 2𝑦 + 1 = 0𝑦−1=0Tọa độ C là nghiệm của hệ phương trình:⇒ 𝐶 5; 1𝑥 − 2𝑦 − 3 = 0Lúc này bài toán trở thành viết phương trình 3 cạnh tam giác khi biết tọa độ 𝐴 1; 3 ; 𝐵 −3; −1 ; 𝐶 5; 1Baøi 4. Cho tam giác ABC, biết phương trình một cạnh và hai đường trung tuyến. Viết phương trình cáccạnh cịn lại của tam giác đó, với: AB : x  2y  7  0, AM : x  y  5  0, BN : 2 x  y  11  0HD:12 C2x+y-11=0x+y-5=0MNGAx-2y+7=0BAC :16 x  13y  68  0, BC :17x  11y  106  0Dựng tam giác ABC, khi biết hai đƣờng thẳng chứa hai cạnh AB, AC và trung điểm M của cạnhBC.Cách dựng:– Xác định A = AB  AC.– Dựng d1 qua M và song song với AB.– Dựng d2 qua M và song song với AC.– Xác định trung điểm I của AC: I = AC  d1.– Xác định trung điểm J của AB: J = AB  d2.– Xác định B, C sao cho JB  AJ , IC  AI .Cách khác:Trên AB lấy điểm B, trên AC lấy điểm C sao cho MB   MC .Baøi 5. Cho tam giác ABC, biết phương trình hai cạnh và toạ độ trung điểm của cạnh thứ ba. Viết phươngtrình của cạnh thứ ba, với AB : 2 x  y  2  0, AC : x  3y  3  0, M(1;1)HD:A2x+y-2=0x+3y-3=0CM(1;-1)BĐường thẳng d qua M và song song AB: 2x+y-2=0 có dạng: 2x+y +c =0 𝑐 ≠ −2Vì M(1;-1) nên 2.1-1+c=0 ⇒ 𝑐 = −1 (tm) ⇒ 𝑑 : 2𝑥 + 𝑦 − 1 = 0(d) đi qua trung điểm I của AC nên tọa độ điểm I thỏa mãn hệ phương trình:𝑥 + 3𝑦 − 3 = 0𝑥=0⇒⇒ 𝐼 0; 1𝑦=12𝑥 + 𝑦 − 1 = 0Tương tự tìm được tọa độ trung điểm N của AB.Phương trình BC qua M(1;-1) và nhận 𝐼𝑁 làm vecto chỉ phương. Từ đó viết phương trình BCTrang 13 CHUYÊN ĐỀ 4Vị trí tƣơng đối của hai đƣờng thẳngHai đường thẳng cho dạng tổng quát: 1: a1x  b1y  c1  0 và 2: a2 x  b2 y  c2  0 .Toạ độ giao điểm của 1 và 2 là nghiệm của hệ phương trình:a1x  b1y  c1  0a2 x  b2 y  c2  0(1) 1 cắt 2 hệ (1) có một nghiệma1 b1a2 b2 1 // 2 hệ (1) vô nghiệma1 b1 c1(nếu a2 , b2 , c2  0 )a2 b2 c2 1  2 hệ (1) có vơ số nghiệma1 b1 c1(nếu a2 , b2 , c2  0 )a2 b2 c2(nếu a2 , b2 , c2  0 ) Hai đường thẳng cho dưới dạng 1 tổng quát, 1 tham số:Cách 1: Chuyển tham số về tổng quát rồi dùng cách trên.Cách 2: Thay x, y từ phương trình tham số vào tổng quát để tìm t rồi suy ra vị trí tương đơi.Để chứng minh ba đường thẳng đồng qui, ta có thể thực hiện như sau:– Tìm giao điểm của hai trong ba đường thẳng.– Chứng tỏ đường thẳng thứ ba đi qua giao điểm đó.Bài 1. Xét vị trí tương đối của các cặp đường thẳng sau, nếu chúng cắt nhau thì tìm toạ độ giao điểm củachúng:a) 2 x  3y  1  0,c)4 x  5y  6  0𝑥 = 4 + 2𝑡𝑥 = 5 + 𝑡′;𝑦 = −3 + 2𝑡′ 𝑦 = −7 + 3𝑡x  5  te) , y  1x  y5  0b) 4 x  y  2  0,  8x  2y  1  0d)𝑥 = 2 + 3𝑡𝑥 = 1 − 𝑡′;𝑦 = −2 + 2𝑡′ 𝑦 = −4 − 6𝑡f) x  2, x  2y  4  0HD:23a) Vì 4 ≠ 5 nên hệ có nghiệm duy nhất, suy ra hai đường thẳng cắt nhau.Tọa độ giao điểm là nghiệm của hệ phương trình:23232𝑥 + 3𝑦 + 1 = 0𝑥=⇒⇒𝐼; −824𝑥 + 5𝑦 − 6 = 02𝑦 = −8b)4Ta có: −8 =−122≠ 1 Hệ phương trình vơ nghiệm nên hai đường thẳng song song.c)Xét hệ phương trình:5 + t′ = 4 + 2t ⇔ t ′ − 2t = −1 ⇔ t ′ = −52t ′ − 3t = −4t = −2−3 + 2t ′ = −7 + 3t14 Hệ có nghiệm duy nhất nên hai đường thẳng cắt nhau . Thay t’ = -5 vàota được𝑥 = 5 + 𝑡′𝑦 = −3 + 2𝑡′𝑥=0. Vậy hai đường thẳng cắt nhau tại A 0;-13) .𝑦 = −13Baøi 2. Cho hai đường thẳng d và . Tìm m để hai đường thẳng:i) cắt nhaua) d : mx  5y  1  0,ii) song songiii) trùng nhau : 2x  y  3  0b) d : 2mx  (m  1)y  2  0,  : (m  2)x  (2m  1)y  (m  2)  0HD:a)Hai đường thẳng cắt nhau khi:𝑚2≠−51⇔ 𝑚 ≠ −10Vậy 𝑚 ≠ −10 thì hai đường thẳng cắt nhau.Hai đường thẳng song song khi:Vì−51𝑚2=−511≠ −3 ⇔ 𝑚 = −101≠ −3 nên không tồn tại m để hai đường thẳng trùng nhau.b) Hai đường thẳng cắt nhau khi:2𝑚𝑚−1≠⇔ 2𝑚 2𝑚 + 1 ≠ 𝑚 + 2 𝑚 − 1 ⇒ 𝑚 ≠𝑚 + 2 2𝑚 + 1Hai đường thẳng song song khi:2𝑚𝑚−1=2𝑚𝑚−12=≠⇔ 𝑚 + 2 2𝑚 + 1 ⇒ 𝑚𝑚−12𝑚 + 2 2𝑚 + 1 𝑚 + 2≠2𝑚 + 1 𝑚 + 2Hai đường thẳng trùng nhau khi:2𝑚𝑚−1=2𝑚𝑚−12==⇔ 𝑚 + 2 2𝑚 + 1 ⇒ 𝑚𝑚−12𝑚 + 2 2𝑚 + 1 𝑚 + 2=2𝑚 + 1 𝑚 + 2Bài 3.Tìm m để ba đường thẳng sau đồng qui:y  2 x  1,3x  5y  8, (m  8)x  2my  3mHD:Tọa độ giao điểm I của đường thẳng (d1) và (d2) và nghiệm của hệ phương trình:𝑦 = 2𝑥 − 1𝑥=1⇔⇒ 𝐼 1; 1𝑦=13𝑥 + 5𝑦 = 8Để 3 đường thẳng đồng quy thì I thuộc (d3). Suy ra: (m+8).1-2m.1=3m ⇒ 𝑚CHUYÊN ĐỀ 5Khoảng cách từ một điểm đến một đƣờng thẳngKhoảng cách từ một điểm đến một đường thẳngTrang 15 Cho đường thẳng : ax  by  c  0 và điểm M0 ( x0 ; y0 ) .d ( M0 , ) ax0  by0  ca2  b2Bài 1. Tính khoảng cách từ điểm M đến đường thẳng d, với:a) M(4; 5), d : 3x  4y  8  0b) M(3;5), d : x  y  1  0 x  2tc) M (4; 5), d :  y  2  3td) M (3;5), d :x  2 y 123HD:a) Khoảng cách từ M(4;-5) đến (d): 3x-4y+8=0 là:3.4 − 4. −5 + 8h==832 + −4 2c Chuyển d về dạng tổng quát: 3x-2y+4=0 rồi tính như câu a.d Chuyển d về dạng tổng quát : 3x-2y-8=0 rồi tính như câu a.Bài 2. Cho tam giác ABC. Tính diện tích tam giác ABC, với: A(–1; –1), B(2; –4), C(4; 3)HD:Ta có: 𝐴𝐵 3; −3 ⇒ 𝐴𝐵 = 3 2Phương trình đường thẳng AB là:𝑥+1𝑦+1=⇒𝑥+𝑦+2=02 + 1 −4 + 1Khoảng cách từ điểm C(4;3) tới AB: x+y+2=0 là:𝑕=4+3+22=9 2211⇒ 𝑆𝐴𝐵𝐶 = 2 . 𝐴𝐵. 𝑕 = 2 . 3 2.9 22=272(đvdt)Bài 3. Viết phương trình đường thẳng d song song và cách đường thẳng : 2x-y+3=0 một khoảng𝑘= 5HD:(d) song song 2x-y+3=0 nên (d) có dạng: 2x-y+c =0 (c ≠ 3)Lấy M(0;3) thuộc ∆ . Vì (d) cách ∆ một khoảng là 5 nên khoảng cách từ M đến (d) là 5𝑕𝑀→𝑑 =2.0 − 3 + 𝑐22 + −1 22𝑥 − 𝑦 + 8 = 0Vậy đường thẳng cần tìm là:2𝑥 − 𝑦 − 2 = 0= 5⇔ 𝑐−3 =5⇔𝑐=8𝑡𝑚𝑐 = −2Bài 4. Viết phương trình đường thẳng d song song với đường thẳng : 3x-4y+12=0 và cách điểm A(2;3)16 một khoảng bằng k=2HD:a) Vì (d) song song ∆: 3𝑥 − 4𝑦 + 12 = 0 nên (d) có dạng: 3𝑥 − 4𝑦 + 𝑐 = 0 𝑐 ≠ 12Vì khoảng cách từ A(2;3) đến d bằng 2 nên:3.2 − 4.3 + 𝑐32+ −4Vậy phương trình đường thẳng cần tìm là:2= 2 ⇔ 𝑐 − 6 = 10 ⇔𝑐 = 16𝑐 = −43𝑥 − 4𝑦 + 16 = 03𝑥 − 4𝑦 − 4 = 0Bài 5. Viết phương trình đường thẳng đi qua A(-1;2) và cách B(3;5) một khoảng bằng d=3HD:Phương trình đường thẳng đi qua A(-1;2) có hệ số góc k có dạng: y= k(x+1) +2 hay kx –y +k+2=0 (d’)Vì (d’) cách B(3;5) một khoảng bằng 3 nên ta có :3𝑘−5+𝑘+2𝑘 2 +1= 3 ⇔ 4𝑘 − 3 = 3 𝑘 2 + 1. Các em bình phương hai vế tìm k. Rồi thay vào (d’) suy rađường thẳng.Bài 6. Viết phương trình đường thẳng đi qua điểm M(2;5) và cách đều hai điểm P(-1;2), Q(5;4)HD:AIMBHD:Có hai đường thẳng thỏa mãn yêu cầu:- Đường thẳng qua M và trung điểm I của AB: Các em tính trung điểm I rồi viết phương trình đườngthẳng qua 2 điểm- Đường thẳng qua M và song song AB.CHUYÊN ĐỀ 6:Góc giữa hai đƣờng thẳngCho hai đường thẳng 1: a1x  b1y  c1  0 (có VTPT n1  (a1; b1 ) )và 2: a2 x  b2 y  c2  0 (có VTPT n2  (a2 ; b2 ) ).𝑛1 ; 𝑛2 𝑘𝑕𝑖 𝑛1 ; 𝑛2 ≤ 9001800 − 𝑛1 ; 𝑛2 𝑘𝑕𝑖 𝑛1 ; 𝑛2 > 900𝑛1 . 𝑛2𝑎1 . 𝑏1 + 𝑎2 . 𝑏1= 𝑐𝑜𝑠 𝑛1 ; 𝑛2 ==𝑛1 . 𝑛2 |𝑎12 + 𝑏12 . 𝑎22 + 𝑏22∆1 ; ∆2 =𝑐𝑜𝑠 ∆1 ; ∆2Trang 17 Chú ý: 00 ≤ ∆1 ; ∆2 ≤ 900 . 1  2  a1a2  b1b2  0 . Cho 1: y  k1x  m1 , 2: y  k2 x  m2 thì:+ 1 // 2  k1 = k2+ 1  2  k1. k2 = –1. Cho ABC. Để tính góc A trong ABC, ta có thể sử dụng cơng thức:cos A  cos  AB, AC  AB. ACAB . ACBài 1. Tính góc giữa hai đường thẳng: x  2y  1  0, x  3y  11  0HD:Ta có: 𝑛1 1; −2 ; 𝑛2 1; 3 ⇒ 𝑐𝑜𝑠𝑎 =𝑛 1 .𝑛 2𝑛 1 .|𝑛 1 |=1.1−2.35. 10=22⇒ 𝑎 = 450Baøi 2. Tính số đo của các góc trong tam giác ABC, với: A(–3; –5), B(4; –6), C(3; 1)HD:𝐴𝐵 7; −1 ; 𝐴𝐶 6; 6 ⇒ 𝑐𝑜𝑠𝐴 =𝐴𝐵 . 𝐴𝐶7.6 − 1.63== ⇒ 𝐴 = 530𝐴𝐵. 𝐴𝐶550. 72CÂU HỎI TRẮC NGHIỆM1. Cho tam giác ABC có A(2;0); B(0;3); C(–3;–1 . Đường thẳng đi qua B và song song với AC có phươngtrình là:a) 5x–y+3=0b) 5x+y–3=0c) x+5y–15=0d) x–5y+15=02. Cho đường thẳng d : 2x+y–2=0 và điểm A 6;5 . Điểm A’ đối xứng với A qua d có toạ độ là:a) (–6;–5)b) (–5;–6)c) (–6;–1)d) (5;6)3. Trong các điểm sau đây, điểm nào thuộc đường thẳng ): 4x–3y-1=0a) A(1;1)b) B(0;1)c) C(–1;–1)d) D(–4. Trong các mệnh đề sau đây mệnh đề nào đúng?1;0)2a Đường thẳng song song với trục Oy có phương trình : x = m m  0).b Đường thẳng có phương trình x = m2–1 song song với trục Ox.x y1c Đường thẳng đi qua hai điểm M 2;0 và N 0;3 có ph.trình : 2 35. Hệ số góc của đường thẳng ) : 3 x –y+4=0 là:a)13b)  3c)4d) 3318 x  4  tlà: y  3td) 3x+y+9=06. Đ.thẳng đi qua điểm A –4;3 và song song với đ.thẳng ): a) 3x–y+9=0b) –3x–y+9=0.c) x–3y+3=0.x  4  t. Trong các mệnh đề sau, mệnh đề nào sai? y  3ta Điểm A 2;0 thuộc ().b Điểm B 3;–3 không thuộc );c điểm C –3;3 thuộc ).x2 yd Phương trình :là phương trình chính tắc của ).138. Phương trình nào là phương trình tham số của đường thẳng x–y+2=0 là:x  tx  2x  3  tx  ta) b) c) d) y  2  ty  ty 1 ty  3 t7. Cho đường thẳng ): 9. Các phương trình sau, phương trình nào là phương trình của đường thẳng :x  ma) m với m  R y  1  2b) xy=11 1 4x y10. Cho A(5;3); B(–2;1 . Đường thẳng có phương trình nào sau đây đi qua A;B:a) 2x–2y+11=0 b) 7x–2y+3=0c) 2x+7y–5=0 d) 2x-7y+11=0.c) x2 + y + 1 = 0d)11. Các cặp đường thẳng nào sau đây vng góc với nhau? x  2ta) (d1): và (d2): 2x+y–1=0 y  1  tx  0b) (d1): x–2=0 và (d2): y  tc) (d1): y=2x+3 và (d2): 2y=x+1.d) (d1): 2x–y+3=0 và (d2): x+2y–1=0.12. Đường thẳng nào qua A 2;1 và song song với đường thẳng : 2x+3y–2=0?a) x–y+3=0b)2x+3y–7=0 c) 3x–2y–4=0d) 4x+6y–11=0 x  3  2k(k  R . Phương trình nào sau đây lày 1 k13. Cho phương trình tham số của đường thẳng d : phương trìnhg tổng quát của d :a) x+2y–5=0b) x+2y+1=0c) x–2y–1=0d) x–2y+5=014. Ph.trình tham số của đ.thẳng d đi qua M –2;3) và có VTCP u =(3;–4) là: x  2  3ta)  y  1  4t x  2  3tb)  y  3  4t x  1  2tc)  y  4  3t x  3  2td)  y  4  t15. Toạ độ điểm đối xứng của điểm A 3;5 qua đường thẳng y = x là:a) (–3;5)b) (–5;3)c) (5;–3)d) (5;3)16. Ph.trình tổng quát của đường thẳng d đi qua hai điểm M 1;2 và N 3;4 là:a) x+y+1=0b) x+y–1=0c) x–y–1=0d) x-y+1=017. Vectơ pháp tuyến của đường thẳng đi qua hai điểm A 1;2 ;B 5;6 là:Trang 19 a) n  (4;4)b) n  (1;1)c) n  (4;2)d) n  (1;1) x  2  3tlà hai đường thẳng : y  2tc) Trùng nhau.18. Hai đường thẳng d1 : x+3y –3=0 và(d2) : a Cắt nhau.b) Song song.19. Họ đường thẳng dm : (m–2)x +(m+1)y–3=0 luôn đi qua một điểm cố định. Đó là điểm có toạ độ nàotrong các điểm sau?a) A(–1;1)b) B(0;1)c) C(–1;0)d) D(1;1)20. Phương trình đường trung trực của AB với A 1;3 và B –5;1) là: x  2  3tb) y 1 ta) 3x+y+4=0c)x2 y232 x  2  3td)  y  2  2t21. Cho 2 điểm A –1;2); B(–3;2) và đường thẳng ): 2x–y+3=0. Điểm C trên đường thẳng ) sao choABC là tam giác cân tại C có toạ độ là:a) C(–2;–1)b) C(0;0)c) C(–1;1)d) C(0;3)22. Cho đường thẳng d : y=2 và hai điểm A 1;2 ;C 0;3 . Điểm B trên đường thẳng d sao cho tam giác ABCcân tại C có toạ độ là:a) B(5;2)b) B(4;2)c) B(1;2)d) B(–2;2)23. Cho ba điểm A 1;2 ; B 0;4 ;C 5;3 . Điểm D trong mặt phẳng toạ độ sao cho ABCD là hình bình hành cótoạ độ là:a) D(6;1)b) D(4;5)c) D(3;2)d) D(0;3)24. Cho hai điểm A 0;1 và điểm B 4;–5 . Toạ độ tất cả các điểm C trên trục Oy sao cho tam giác ABC là tamgiác vuông tại A là:7a) (0;1)b) (0;1); (0;  )37c)(0;1);(0;  ); 0;2  2 7 ; 0;2  2 7d) 0;2  2 7 ; 0;2  2 7325. Với giá trị nào của m thì hai đường thẳng sau song song với nhau:(d1): (m–1)x–y+3=0 và (d2): 2mx–y–2=0 ?a) m=0b) m= –1c m=a a là một hằng sốd) m=226. Đ.thẳng đi qua điểm M 1; 2 và song song với đ.thẳng d : 4x + 2y + 1 = 0 có phương trình tổng qt là:a) 4x + 2y + 3 = 0c) 2x + y – 4 = 0b) 2x + y + 4 = 0d) x – 2y + 3 = 027. Tính khoảng cách từ điểm M –2; 2 đến đường thẳng Δ : 5x – 12y – 10 = 0a) 24/13 b) 44/13c) 44/169d) 14/16928. Tính khoảng cách từ điểm M 0; 3 đến đuờng thẳng Δ :x cos α + y sin α + 3 2 – sin α = 0a)6b) 6c 3 sin αd)3sin   cos29. Tìm tọa độ điểm M' đối xứng với điểm M 1; 4 qua đ.thẳng d: x – 2y + 2 = 0a) M'(0; 3)b) M'(2; 2)30. Tính góc nhọn giữa hai đường thẳng:a)300c) M'(4; 4)d1: x + 2y + 4 = 0;b) 450c) 600d) M' (3; 0)d2: x – 3y + 6 = 0d) 23012'20 x  5  t y  9  2tTrong các phương trình sau đây, ph.trình nào là ph.trình tổng quát của d ?a) 2x + y – 1 = 0 b) 2x + y + 1 = 0 c) x + 2y + 2 = 0 d) x + 2y – 2 = 031. Cho phương trình tham số của đường thẳng d : 32. Cho hai đ.thẳng: d1: 4x – my + 4 – m = 0 ; d2: (2m + 6)x + y – 2m –1 = 0Với giá trị nào của m thì d1 song song với d2.a) m = 1b) m = –1c) m = 2d) m = –1 v m = -233. Tìm tọa độ hình chiếu vng góc H của điểm M 1; 4 xuống đường thẳng d: x – 2y + 2 = 0a) H(3;0)b) H(0; 3)c) H(2; 2)d) H(2; –2)34. Trong các đường thẳng sau đây, đường thẳng nào vng góc với đường thẳng d: x + 2y – 4 = 0 và hợpvới 2 trục tọa độ thành một tam giác có diện tích bằng 1?a) 2x + y + 2 = 0 b) 2x – y – 1 = 0 c) x – 2y + 2 = 0 d) 2x – y + 2 = 035. Tính góc giữa hai đ. thả ng Δ1: x + 5 y + 11 = 0 và Δ2: 2 x + 9 y + 7 = 0a) 450b) 300c) 88057 '52 ''d) 1013 ' 8 ''36. Cho đường thẳng d có phương trình tổng quát: 3x + 5y + 2003 = 0. Trong các mệnh đề sau, tìm mệnh đềsai:a d có vectơ pháp tuyến n = (3; 5) b d có vectơ chỉ phương u = (5; –3)c d có hệ số góc k = 5/3d d song song với đ.thẳng 3x + 5y = 037. Lập phương trình của đường thẳng Δ đi qua giao điểm của hai đường thẳng: d1 : x + 3y – 1 = 0;d2 : x – 3y – 5 = 0và vng góc với đường thẳng: d3 : 2x – y + 7 = 0a) 3x + 6y – 5 = 0b) 6x + 12y – 5= 0c) 6x +12y+10= 0d) x + 2y + 10=038. Cho tam giác ABC có tọa độ các đỉnh là A 1; 2 , B 3; 1 , C 5; 4 . Phương trình đường cao vẽ từ A là:a) 2x + 3y – 8 = 0c) 5x – 6y + 7 = 0b) 3x – 2y – 5 = 0d) 3x – 2y + 5 = 039. Đường thẳng đi qua điểm M 1; 2 và vng góc với vectơ n = 2; 3 có phương trình chính tắc là:a)x 1 y  223b)x 1 y  232c)x 1 y  223d)x 1 y  23240. Đường thẳng đi qua điểm N –2; 1 và có hệ số góc k = 2/3 có phương trình tổng qt là:a) 2x – 3y + 7 = 0c) 2x + 3y + 1 = 0b) 2x – 3y – 7 = 0d) 3x – 2y + 8 = 0Trang 21

Tài liệu liên quan

  • Phương pháp tọa độ trong mặt phẳng Phương pháp tọa độ trong mặt phẳng
    • 4
    • 939
    • 4
  • TU CHON TOAN 10 CB ( PHUONG PHAP TOA DO TRONG MAT PHANG) TU CHON TOAN 10 CB ( PHUONG PHAP TOA DO TRONG MAT PHANG)
    • 4
    • 879
    • 12
  • Phương pháp tọa độ trong mặt phẳng Phương pháp tọa độ trong mặt phẳng
    • 22
    • 543
    • 0
  • Dạy học chủ đề phương pháp tọa độ trong mặt phẳng chương trình hình học 10 nâng cao với sự trợ giúp của phần mềm cabri II plus luận văn thạc sĩ toán học Dạy học chủ đề phương pháp tọa độ trong mặt phẳng chương trình hình học 10 nâng cao với sự trợ giúp của phần mềm cabri II plus luận văn thạc sĩ toán học
    • 124
    • 3
    • 10
  • PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG
    • 15
    • 438
    • 0
  • PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG
    • 14
    • 595
    • 5
  • Phương pháp toạ độ trong mặt phẳng Phương pháp toạ độ trong mặt phẳng
    • 10
    • 582
    • 0
  • phương pháp toạ độ trong mặt phẳng phương pháp toạ độ trong mặt phẳng
    • 101
    • 524
    • 3
  • PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG ÔN THI ĐẠI HỌC NĂM 2009 pptx PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG ÔN THI ĐẠI HỌC NĂM 2009 pptx
    • 10
    • 859
    • 4
  • PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG
    • 31
    • 1
    • 3

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

(681.96 KB - 21 trang) - Phương pháp tọa độ trong mặt phẳng phương trình đường thẳng Tải bản đầy đủ ngay ×

Từ khóa » Cách Tìm Vtpt Khi Biết Vtcp