Phương Pháp Và Bài Tập Tính Nguyên Hàm Từng Phần
Có thể bạn quan tâm
T. LÝ THUYẾT
1. Định lý.
Nếu u = (x) và v = v(x) là 2 hàm số có đạo hàm liên tục trên đoạn K thì:
\(\int u(x)v'(x)dx=u(x).v(x)-u(x)\int v(x)dx\)
Viết gọn lại: \(\int udv=u.v-v\int du\)
2. Một số dạng tính nguyên hàm từng phân.
Dạng 1: \(I = \int {f\left( x \right)\sin xdx} \) hoặc \(I = \int {f\left( x \right)\cos xdx} \), trong đó f(x) là đa thức.
Phương pháp: Đặt \(\left\{\begin{matrix} u=f(x) & \\ dv=sinxdx & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} du=f'(x)dx & \\ v=\int sinxdx& \end{matrix}\right.\)
Dạng 2: \(I=\int f(x).e^{x}dx\) , trong đó f(x) là 1 đa thức.
Phương pháp: Đặt \(\left\{\begin{matrix} u=f(x) & \\ dv=e^{x}dx & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} du=f'(x)dx & \\ v=\int e^{x}dx& \end{matrix}\right.\)
Dạng 3: \(I = \int {f\left( x \right)\ln xdx} \) hoặc \(I = \int {f\left( x \right){{\log }_a}xdx} \), trong đó f(x) là 1 đa thức.
Phương pháp: Đặt: \(\left\{\begin{matrix} u=lnx & \\ dv=f(x)dx & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} du=\frac{1}{x} dx& \\ v=\int f(x) dx& \end{matrix}\right.\)
3. Một số chú ý:
Khi gặp lượng giác và mũ ta có thể đặt “u→dv” theo thứ tự “lượng giác → mũ” hoặc ngược lại đều được và phải sử dụng hai lần tích phân từng phần. Cả hai lần tích phân từng phần trong trường hợp nàyphải thống nhất theo cùng thứ tự. Nếu không sẽ xảy ra hiện tượng I = I.+) Khi sử dụng phương pháp tích phân từng phần thì số lần thực hiện phụ thuộc vào bậc của hàm logarit và đa thức. Cụ thể:*) Nếu trong biểu thức tích phân có \(log_{n}^{a} f(x) ; ln^{n}f(x)\) thì phải tích phân từng phần n lần.*) Nếu trong biểu thức tích phân có đa thức bậc n: (không có hàm logarit) ==> thì cũng phải tích phân từng phần lần.
II. LUYỆN TẬP.
Ví dụ 1. Tìm nguyên hàm của các hàm số sau:
\(a)I_{1}=\int x.sinxdx; b) I_{2}=\int x.e^{3x}dx; c)\int x^{2}.cosxdx\)
Hướng dẫn giải
BÀI TẬP TỰ LUYỆN
Từ khóa » Nguyên Hàm Của Uv
-
Công Thức Tính Nguyên Hàm Từng Phần Và Cách Giải Bài Tập
-
Phương Pháp Nguyên Hàm Từng Phần, Trắc Nghiệm Toán Học Lớp 12
-
Công Thức Nguyên Hàm Từng Phần đầy đủ Nhất - TopLoigiai
-
Công Thức Nguyên Hàm Từng Phần - Tính Nhanh Bằng Sơ đồ
-
Công Thức Nguyên Hàm Từng Phần Và Cách Giải Bài Tập Chi Tiết
-
Bảng Nguyên Hàm Và Công Thức Nguyên Hàm Đầy Đủ, Chi Tiết
-
Công Thức Nguyên Hàm Từng Phần – Giải Nhanh Bài Toán Tìm Nguyên ...
-
Công Thức Nguyên Hàm
-
Chi Tiết Công Thức Tính Nguyên Hàm Từng Phần Cơ Bản Và Nâng Cao
-
Tích Phân Từng Phần – Wikipedia Tiếng Việt
-
Tìm Nguyên Hàm Bằng Phương Pháp Nguyên Hàm Từng Phần
-
Lý Thuyết Sử Dụng Phương Pháp Nguyên Hàm Từng Phần để Tìm ...
-
Tích Phân Từng Phần - SlideShare