PHƯƠNG TRÌNH BẬC HAI: TẠI SAO PHẢI TÍNH DELTA? - BITEXEDU

Thông thường đối với một học sinh lớp 9, khi hỏi cách tính phương trình bậc 2 $\left( a{{x}^{2}}+bx+c=0,a\ne 0 \right)$ , các em học sinh thường sẽ trả lời là: “ta tính $\Delta ={{b}^{2}}-4ac$ sau đó xét coi $\Delta >0,\Delta <0$ hay $\Delta =0$ rồi từ đó tuỳ thuộc vào $\Delta $ mà ta có cách tính cụ thể cho từng nghiệm”. Vậy tại sao phải tính delta, đa phần các em không trả lời được. Bài viết này ad sẽ chỉ dành để trả lời câu hỏi đó.

Trước tiên, ta sẽ xem lại cách giải nghiệm của các em học sinh lớp 9.

Untitled 1 1
Nước được phun thành đường cong dạng đồ thị của hàm số bậc hai (nguồn: internet)
1. Phương trình bậc 2 là gì ? Cách giải tổng quát phương trình bậc 2 thông thường

a. Phương trình bậc 2

Phương trình bậc 2 là phương trình có dạng:

$a{{x}^{2}}+bx+c=0$

Trong đó $a\ne 0,a,b$ là hệ số, $c$ là hằng số.

b. Cách giải tổng quát

Ta xét phương trình:

$a{{x}^{2}}+bx+c=0$

Với biệt thức delta

$\Delta ={{b}^{2}}-4\text{a}c$

Sẽ có ba trường hợp:

+ Nếu $\Delta <0$ thì phương trình vô nghiệm.

+ Nếu $\Delta =0$ thì phương trình có nghiệm kép ${{x}_{1}}={{x}_{2}}=-\dfrac{b}{2\text{a}}$.

+ Nếu $\Delta >0$ thì phương trình có hai nghiệm phân biệt ${{x}_{1}}=\dfrac{-b+\sqrt{\Delta }}{2a};{{x}_{2}}=\dfrac{-b-\sqrt{\Delta }}{2a}$.

Trên đây là công thức tìm nghiệm tổng quát của phương trình bậc 2. Trông thì có vẻ đơn giản, nhưng các em học sinh thì mãi không hiểu được tại sao phải tìm $\Delta $. Và thầy cô thường lẩn tránh câu hỏi đó.

2. Tại sao phải tìm $\Delta $ ?

Ad sẽ chứng minh công thức giải nghiệm của phương trình bậc 2:

Ta có:

$\begin{array}{l}a{{x}^{2}}+bx+c=0\\\Leftrightarrow a\left( {{{x}^{2}}+\dfrac{b}{a}x} \right)+c=0\\\Leftrightarrow a\left( {{{x}^{2}}+\dfrac{b}{a}x+{{{\left( {\dfrac{b}{{2a}}} \right)}}^{2}}-{{{\left( {\dfrac{b}{{2a}}} \right)}}^{2}}} \right)+c=0\\\Leftrightarrow a\left( {{{x}^{2}}+\dfrac{b}{a}x+{{{\left( {\dfrac{b}{{2a}}} \right)}}^{2}}} \right)-a{{\left( {\dfrac{b}{{2a}}} \right)}^{2}}+c=0\\\Leftrightarrow a\left( {{{x}^{2}}+\dfrac{b}{a}x+{{{\left( {\dfrac{b}{{2a}}} \right)}}^{2}}} \right)-\dfrac{{{{b}^{2}}}}{{4a}}+c=0\\\Leftrightarrow a{{\left( {x+\dfrac{b}{{2a}}} \right)}^{2}}-\dfrac{{{{b}^{2}}-4ac}}{{4a}}=0\\\Leftrightarrow a{{\left( {x+\dfrac{b}{{2a}}} \right)}^{2}}=\dfrac{{{{b}^{2}}-4ac}}{{4a}}\end{array}$

$ \Leftrightarrow 4{{a}^{2}}{{\left( {x+\dfrac{b}{{2a}}} \right)}^{2}}={{b}^{2}}-4ac$

Tới đây ta có thấy gì quen quen không, chính xác đó chính là cái $\Delta $ mà chúng ta vẫn hay tính lúc giải phương trình bậc 2. Và do vế trái của đẳng thức luôn lớn hơn hoặc bằng $0$. Nên chúng ta mới phải biện luận nghiệm của ${{b}^{2}}-4ac$:

+ ${{b}^{2}}-4ac<0$ : phương trình vô nghiệm

+ ${{b}^{2}}-4ac=0$ Phương trình trở thành

$$ 4{{a}^{2}}{{\left( x+\dfrac{b}{2a} \right)}^{2}}=0\Leftrightarrow x=-\dfrac{b}{2a}$$

+ ${{b}^{2}}-4ac>0$ Phương trình trở thành

$$ \begin{aligned}  & 4{{a}^{2}}{{\left( x+\dfrac{b}{2a} \right)}^{2}}={{b}^{2}}-4ac \\ & \Leftrightarrow {{\left[ 2a\left( x+\dfrac{b}{2a} \right) \right]}^{2}}={{b}^{2}}-4ac\Leftrightarrow \left[ \begin{aligned}  & 2a\left( x+\dfrac{b}{2a} \right)=\sqrt{{{b}^{2}}-4ac} \\ & 2a\left( x+\dfrac{b}{2a} \right)=-\sqrt{{{b}^{2}}-4ac} \\\end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned}  & x+\dfrac{b}{2a}=\dfrac{\sqrt{{{b}^{2}}-4ac}}{2a} \\ & x+\dfrac{b}{2a}=-\dfrac{\sqrt{{{b}^{2}}-4ac}}{2a} \\\end{aligned} \right.\Leftrightarrow \left[ \begin{aligned}  & x=-\dfrac{b}{2a}+\dfrac{\sqrt{{{b}^{2}}-4ac}}{2a} \\ & x=-\dfrac{b}{2a}-\dfrac{\sqrt{{{b}^{2}}-4ac}}{2a} \\\end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned}  & x=\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\ & x=\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\\end{aligned} \right. \\\end{aligned}$$

Trên đây là toàn bộ cách chứng minh công thức nghiệm của phương trình bậc hai. Và ${{b}^{2}}-4ac$ là mấu chốt cho việc xét điều kiện có nghiệm của phương trình bậc hai. Nên các nhà toán học đã đặt $\Delta ={{b}^{2}}-4ac$ nhằm giúp xét điều kiện có nghiệm dễ dàng hơn, đồng thời giảm thiểu việc sai sót khi tính toán nghiệm của phương trình.

—————————————–

Theo ad đây là giải thích cho câu trả lời: “tại sao phải tính Delta trong phương trình bậc 2” các bạn có ý tưởng, hay câu trả lời nào hay hơn thì gửi tin nhắn qua fanpage cho ad nhá.

Từ khóa:#biện luận nghiệm phương trình bậc hai #delta #phương trình #phương trình bậc hai #thcs #Toán THCS #Tuyển sinh 10 Chia sẻ

About Bitex Khánh Vũ

Bitex Khánh Vũ Sử dụng lệnh solve để giải phương trình Pythagoras (Pitago) trên máy tính Casio fx-580VNX HƯỚNG DẪN PHÂN BIỆT MÁY TÍNH CASIO FX 580VNX THẬT/GIẢ

Bài viết liên quan

Cài đặt máy tính giả lập Casio fx-880BTG lên MacBook

1 tuần Trước

GIẢI CHI TIẾT ĐỀ THI TUYỂN SINH 10 THPT NĂM 2024 – 2025 SỞ GD&ĐT HÀ NỘI

10/06/2024

Một cách khác giải bài toán phương trình bậc 2 TS 10 Đà nẵng

04/06/2024

[2024-2025] TUYỂN TẬP ĐỀ THI TUYỂN SINH LỚP 10

03/06/2024

Đại số (câu 1) TS 10 PTNK 2024

29/05/2024

Dựa vào BĐT cơ bản để CM 1 bất đẳng thức mới

29/05/2024

Từ khóa » Tính Delta Trên Máy Tính