Proofs Of Derivatives Of Hyperbolas
| Proofs: Derivatives Hyperbolas |
| (Math | Calculus | Derivatives | Table Of | Hyperbolas) |
sinh(x) = cosh(x) cosh(x) = sinh(x) tanh(x) = 1 - tanh(x)^2 csch(x) = -coth(x)csch(x) sech(x) = -tanh(x)sech(x) coth(x) = 1 - coth(x)^2 |
Proofs of Derivatives of Hyperbolas
Proof of
sinh(x) = cosh(x) : From the derivative of e^x Given: sinh(x) = ( e^x - e^-x )/2; cosh(x) = (e^x + e^-x)/2;
( f(x)+g(x) ) =
f(x) +
g(x); Chain Rule;
( c*f(x) ) = c
f(x). Solve:
sinh(x)=
( e^x- e^-x )/2 = 1/2
(e^x) -1/2
(e^-x)
= 1/2 e^x + 1/2 e^-x = ( e^x + e^-x )/2 = cosh(x)   Q.E.D
Proof of
cosh(x) = sinh(x) : From the derivative of e^x
Given: sinh(x) = ( e^x - e^-x )/2; cosh(x) = (e^x + e^-x)/2;
( f(x)+g(x) ) =
f(x) +
g(x); Chain Rule;
( c*f(x) ) = c
f(x). Solve:
cosh(x)=
( e^x + e^-x)/2 = 1/2
(e^x) + 1/2
(e^-x)
= 1/2 e^x - 1/2 e^-x = ( e^x - e^-x )/2 = sinh(x) QED
Proof of
tanh(x)= 1 - tan^2(x) : from the derivatives of sinh(x) and cosh(x)
Given:
sinh(x) = cosh(x);
cosh(x) = sinh(x); tanh(x) = sinh(x)/cosh(x); Quotient Rule. Solve:
tanh(x)=
sinh(x)/cosh(x)
= ( cosh(x)sinh(x) - sinh(x)
cosh(x) ) / cosh^2(x)
= ( cosh(x) cosh(x) - sinh(x) sinh(x) ) / cosh^2(x) = 1 - tanh^2(x) QED
Proof of
csch(x)= -coth(x)csch(x),
sech(x) = -tanh(x)sech(x),
coth(x) = 1 - coth^2(x) : From the derivatives of their reciprocal functions
Given:
sinh(x) = cosh(x);
cosh(x) = sinh(x);
tanh(x) = 1 - tanh^2(x); csch(x) = 1/sinh(x); sech(x) = 1/cosh(x); coth(x) = 1/tanh(x); Quotient Rule.
csch(x)=
1/sinh(x)= ( sinh(x)
1 - 1
sinh(x))/sinh^2(x) = -cosh(x)/sinh^2(x) = -coth(x)csch(x)
sech(x)=
1/cosh(x)= ( cosh(x)
1 - 1
cosh(x))/cosh^2(x) = -sinh(x)/cosh^2(x) = -tanh(x)sech(x)
coth(x)=
1/tanh(x)= ( tanh(x)
1 - 1
tanh(x))/tanh^2(x) = (tanh^2(x) - 1)/tanh^2(x) = 1 - coth^2(x)
Từ khóa » (d)/(dx)(sinh^(-1)x)=
-
Derivative Rule Of Inverse Hyperbolic Sine Function - Math Doubts
-
Q14, Derivative Of Sinh^-1(x), Two Ways - YouTube
-
Derivative Of Inverse Sinh(x) - YouTube
-
2 Ways: Derivative Arc Sinh D/dx(sinh^-1(x)) - YouTube
-
[PDF] Derivation Of The Inverse Hyperbolic Trig Functions
-
Hyperbolic Differentiation Of $\sinh^{-1}(x/a) - Math Stack Exchange
-
Differentiate Sinh^-1 (x3) With Respect To X . Find Out The Solution Of ...
-
6.9 Calculus Of The Hyperbolic Functions - OpenStax
-
Find Derivative Y=sinh^(-1)((1-x)/(1+x)). - Doubtnut
-
How Do You Find The Derivative Of Y = Sinh^-1 (2x)? - Socratic
-
[PDF] 2 HYPERBOLIC FUNCTIONS
-
[PDF] Derivatives, Integrals, And Properties Of Inverse Trigonometric ...
-
Derivative Of X Sinh(x^2) - Symbolab
-
"Sinh"^(-1) [-x/sqrt(1 - X^2)] = - Doubtnut
-
[PDF] Differentiation - UCL
-
Sqrt {1+x^{2}}}}}&&x\neq 0\end{aligned}}} - Wikimedia