Quy Nạp II - Vườn Toán
Có thể bạn quan tâm
Trang
- Trang nhà
- Kỹ năng mềm
- Giới thiệu
Quy nạp II
Hôm nay chúng ta tiếp tục giải tiếp một số bài toán bằng phương pháp quy nạp. Bài toán 4. Chứng minh rằng $$1 \times 2 \times 3 + 2 \times 3 \times 4 + \dots + n (n+1)(n+2) = \frac{1}{4} n(n+1)(n+2)(n+3).$$ Lời giải. Chúng ta sẽ chứng minh bằng quy nạp rằng với mọi $n \geq 1$ thì $$1 \times 2 \times 3 + 2 \times 3 \times 4 + \dots + n (n+1)(n+2) = \frac{1}{4} n(n+1)(n+2)(n+3).$$ Với $n=1$, chúng ta có $$1 \times 2 \times 3= 6 = \frac{1}{4} 1 \times 2 \times 3 \times 4$$ Như vậy công thức ở trên đúng cho trường hợp $n=1$. Giả sử công thức trên đúng cho các trường hợp $1 \leq n \leq k$. Chúng ta sẽ chứng minh rằng công thức cũng đúng cho trường hợp $n=k+1$, có nghĩa là chúng ta sẽ chứng minh $$1 \times 2 \times 3 + \dots + k (k+1)(k+2) + (k+1)(k+2)(k+3) = \frac{1}{4} (k+1)(k+2)(k+3)(k+4).$$ Thực vậy, theo giả thiết quy nạp thì công thức đúng cho trường hợp $n=k$, cho nên $$1 \times 2 \times 3 + 2 \times 3 \times 4 + \dots + k (k+1)(k+2) = \frac{1}{4} k(k+1)(k+2)(k+3).$$ Do đó $$1 \times 2 \times 3 + \dots + k (k+1)(k+2) + (k+1)(k+2)(k+3) $$ $$= \frac{1}{4} k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)$$ $$= \frac{1}{4} (k+1)(k+2)(k+3)(k+4).$$ Như vậy chúng ta đã chứng minh rằng công thức đúng cho trường hợp $n=k+1$. Theo nguyên lý quy nạp toán học thì công thức phải đúng với mọi số tự nhiên $n \geq 1$. $\blacksquare$ Bài toán 5. Chứng minh rằng $$49 ~\mid~ 8^n + 42 n - 1.$$ Lời giải. Chúng ta sẽ chứng minh bằng quy nạp mệnh đề sau đây $$8^n + 42 n - 1 = 0 \pmod{49}$$ Với $n=0$, chúng ta có $$8^0 + 42 \times 0 - 1 = 0$$ Do đó mệnh đề trên đúng cho trường hợp $n=0$. Giả sử rằng mệnh đề đúng cho các trường hợp $0 \leq n \leq k$. Chúng ta sẽ chứng minh mệnh đề cũng đúng cho trường hợp $n=k+1$, có nghĩa là chúng ta sẽ chứng minh $$8^{k+1} + 42 (k+1) - 1 = 8^{k+1} + 42 k + 41 = 0 \pmod{49}.$$ Thực vậy, theo giả thiết quy nạp thì mệnh đề đúng cho trường hợp $n=k$, cho nên $$8^k + 42 k - 1 = 0 \pmod{49} .$$ Vì vậy, $$8(8^k + 42 k - 1) = 8^{k+1} + 336 k - 8 = 0 \pmod{49} .$$ Do đó $$8^{k+1} + 42 k + 41 = (8^{k+1} + 336 k - 8) - 49(6k - 1) = 0 \pmod{49} .$$ Như vậy chúng ta đã chứng minh mệnh đề đúng cho trường hợp $n=k+1$. Theo nguyên lý quy nạp toán học thì mệnh đề phải đúng với mọi số tự nhiên $n$. $\blacksquare$ Chúng ta thấy rằng ở các bài toán mà chúng ta đã giải ở trên, ở bước quy nạp, để chứng minh $P(k+1)$ đúng, chúng ta chỉ sử dụng giả thiết là $P(k)$ đúng. Như vậy chúng ta chưa cần dùng đến giả thiết là $P(0)$, $P(1)$, ..., $P(k-1)$ đúng. Trong bài toán tiếp theo đây, để chứng minh $P(k+1)$ đúng, chúng ta cần sử dụng hai giả thiết là $P(k-1)$ đúng và $P(k)$ đúng. Bài toán 6. Dãy số Fibonacci được xác định như sau: $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$. Do đó $$F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, F_6 = 8, \dots$$ Chứng minh rằng công thức cho số Fibonacci là như sau $$F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1 + \sqrt{5}}{2} \right)^n - \left( \frac{1 - \sqrt{5}}{2} \right)^n \right]$$ Lời giải. Để cho ngắn gọn, chúng ta sẽ đặt $$\alpha = \frac{1 + \sqrt{5}}{2}, ~~ \beta = \frac{1 - \sqrt{5}}{2}.$$ Chúng ta sẽ chứng minh bằng quy nạp mệnh đề sau $$F_n = \frac{1}{\sqrt{5}} ( \alpha^n - \beta^n ) $$ Với $n=0$, chúng ta có $$\frac{1}{\sqrt{5}} ( \alpha^0 - \beta^0 ) = 0 = F_0$$ Do đó mệnh đề trên đúng cho trường hợp $n=0$. Với $n=1$, chúng ta có $$\frac{1}{\sqrt{5}} ( \alpha^1 - \beta^1 ) = \frac{1}{\sqrt{5}} \sqrt{5} = 1 = F_1$$ Do đó mệnh đề trên đúng cho trường hợp $n=1$. Giả sử rằng mệnh đề đúng cho các trường hợp $0 \leq n \leq k$ trong đó $k \geq 1$. Chúng ta sẽ chứng minh mệnh đề cũng đúng cho trường hợp $n=k+1$, có nghĩa là chúng ta sẽ chứng minh $$F_{k+1} = \frac{1}{\sqrt{5}} ( \alpha^{k+1} - \beta^{k+1} ) $$ Thực vậy, vì $0 \leq k-1 \leq k$, theo giả thiết quy nạp thì mệnh đề đúng cho trường hợp $n=k-1$, cho nên $$F_{k-1} = \frac{1}{\sqrt{5}} ( \alpha^{k-1} - \beta^{k-1} ) $$ Cũng theo giả thiết quy nạp thì mệnh đề đúng cho trường hợp $n=k$, cho nên $$F_{k} = \frac{1}{\sqrt{5}} ( \alpha^{k} - \beta^{k} ) $$ Từ đó suy ra $$F_{k+1} = F_{k-1} + F_k = \frac{1}{\sqrt{5}} [ (\alpha^{k-1} + \alpha^{k}) - (\beta^{k-1} + \beta^{k})] $$ $$= \frac{1}{\sqrt{5}} [ \alpha^{k-1} (1 + \alpha) - \beta^{k-1} ( 1 + \beta)] $$ Chúng ta thấy rằng $\alpha$ và $\beta$ là hai nghiệm của phương trình $1+x=x^2$, do đó $1+\alpha=\alpha^2$ và $1+\beta=\beta^2$. Từ đó suy ra $$F_{k+1} = \frac{1}{\sqrt{5}} ( \alpha^{k-1} \alpha^2 - \beta^{k-1} \beta^2 ) = \frac{1}{\sqrt{5}} ( \alpha^{k+1} - \beta^{k+1} )$$ Như vậy chúng ta đã chứng minh mệnh đề đúng cho trường hợp $n=k+1$. Theo nguyên lý quy nạp toán học thì mệnh đề phải đúng với mọi số tự nhiên $n$. $\blacksquare$ Ở bài toán số 6, để chứng minh $P(k+1)$ đúng, chúng ta cần sử dụng hai giả thiết là $P(k-1)$ đúng và $P(k)$ đúng. Vì vậy mà ở bước khởi điểm, chúng ta phải chứng minh rằng $P(0)$ đúng và $P(1)$ đúng. Từ đó, nhờ bước quy nạp chúng ta có: - vì P(0),P(1) đúng nên P(2) đúng
- vì P(0),P(1), P(2) đúng nên P(3) đúng
- vì P(0),P(1), P(2), P(3) đúng nên P(4) đúng
- v.v...
Với mọi $n$, thì $a_n > 4 n - 2$Với $n=0$, chúng ta có $$a_0 = 1 > 4 \times 0 - 2 = -2$$ Do đó mệnh đề trên đúng cho trường hợp $n=0$. Giả sử rằng mệnh đề đúng cho các trường hợp $0 \leq n \leq k$. Chúng ta sẽ chứng minh mệnh đề cũng đúng cho trường hợp $n=k+1$, có nghĩa là chúng ta sẽ chứng minh $$a_{k+1} > 4(k+1) - 2 = 4k + 2$$ Thực vậy, theo giả thiết quy nạp thì mệnh đề đúng cho trường hợp $n=k-1$, cho nên $$a_{k-1} > 4(k-1) - 2 = 4k - 6$$ Cũng theo giả thiết quy nạp thì mệnh đề đúng cho trường hợp $n=k$, cho nên $$a_{k} > 4k - 2$$ Từ đó suy ra $$a_{k+1} = a_{k-1} + a_k + 11 > (4k - 6) + (4k - 2) + 11 = 8k + 3 > 4k + 2 $$ Như vậy chúng ta đã chứng minh mệnh đề đúng cho trường hợp $n=k+1$. Theo nguyên lý quy nạp toán học thì mệnh đề phải đúng với mọi số tự nhiên $n$. Vậy chúng ta chứng minh xong bất đẳng thức $$a_n > 4 n - 2$$ Thay $n=1$ vào bất đẳng thức trên chúng ta có $$1 > 2$$ Vậy lời giải trên sai ở đâu?! Hẹn các bạn ở kỳ sau, chúng ta sẽ giải thêm một vài bài toán khác bằng phương pháp quy nạp. Bài tập về nhà 1. Tìm công thức tổng quát cho $$1 \times 2 \times 3 + 2 \times 3 \times 4 + \dots + n (n+1)(n+2) = \frac{1}{4} n(n+1)(n+2)(n+3).$$ 2. Chứng minh rằng $$25 ~\mid~ 6^n - 5n - 1$$ Tìm công thức tổng quát cho bài toán này. 3. Với dãy số Fibonacci $$F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, F_6 = 8, \dots$$ Tìm tất cả các số $n$ để $F_n > 3n$. Labels: algebra, đại số, Fibonacci, induction, number theory, quy nạp, số học Bài đăng Mới hơn Bài đăng Cũ hơn Trang chủ
Ủng hộ Vườn Toán trên facebook
Lưu trữ Blog
- ► 2017 (1)
- ► tháng 2 (1)
- ► 2016 (7)
- ► tháng 12 (1)
- ► tháng 10 (1)
- ► tháng 5 (1)
- ► tháng 4 (1)
- ► tháng 3 (2)
- ► tháng 2 (1)
- ► 2015 (12)
- ► tháng 12 (1)
- ► tháng 11 (1)
- ► tháng 10 (1)
- ► tháng 7 (1)
- ► tháng 5 (2)
- ► tháng 4 (4)
- ► tháng 3 (1)
- ► tháng 1 (1)
- ► 2014 (12)
- ► tháng 12 (1)
- ► tháng 11 (3)
- ► tháng 8 (1)
- ► tháng 7 (1)
- ► tháng 6 (1)
- ► tháng 4 (1)
- ► tháng 3 (1)
- ► tháng 2 (2)
- ► tháng 1 (1)
- ► 2013 (26)
- ► tháng 10 (3)
- ► tháng 9 (2)
- ► tháng 8 (2)
- ► tháng 7 (2)
- ► tháng 6 (3)
- ► tháng 5 (3)
- ► tháng 4 (3)
- ► tháng 3 (3)
- ► tháng 2 (3)
- ► tháng 1 (2)
- ► 2011 (7)
- ► tháng 1 (7)
English Version
Bài toán kết nối facebook
Phép nhân thời đồ đá
Mắt Biếc Hồ Thu
Lục giác kỳ diệu
Định lý Pitago
1 = 2012 = 2013
Dãy số Fibonacci và một bài toán xếp hình
James vẽ hình
Câu hỏi của James
Hình vuông số chính phương kỳ diệu của Vianney!
Câu đố mẹo về đo lường
Công thức lượng giác Gauss cho 17-giác đều
Chào năm mới 2014
Chào năm mới 2015
Chào năm mới 2016
Không gian 4 chiều là gì?
Dựng hình đa giác đều
Dựng đa giác đều 15 cạnh
Ngày số Pi (2015)
Ngày số Pi (2016)
0.9999999... có bằng 1 không? (2015)
Hình tam giác
Bàn cờ vua và kim tự tháp
Dãy số
Dãy số - Phần 1Dãy số - Phần 2
Dãy số - Phần 3
Dãy số - Phần 4
Dãy số - Phần 5
Dãy số - Phần 6
Dãy số - Phần 7
Dãy số - Phần 8
Dãy số - Phần 9
Đại số
Tam giác PascalQuy nạp
Quy nạp II
Quy nạp III
Nhị thức Newton
1 = 2012 = 2013
Đa thức nội suy Newton
Đa thức nội suy Lagrange
Chứng minh Định lý Wilson bằng công thức nội suy
Tổng luỹ thừa
Số phức
Số phứcCông thức Moivre
Lượng giác
Công thức lượng giác cho góc bội
Công thức lượng giác Gauss cho 17-giác đều
Ngày số Pi (2016)
Radian là gì?
Số học
modulo - Phần 1
modulo - Phần 2
modulo - Phần 3
modulo - Phần 4
modulo - Phần 5
modulo - Phần 6
Số nguyên tố
Định lý Euclid về số nguyên tố
Một vài bài toán về số nguyên tố
Định lý Wilson
Bộ số Pitago
Modulo cho số hữu tỷ
Modulo cho số hữu tỷ II
Chứng minh lại định lý Wilson
Bổ đề Bezout
Thuật toán Euclid
Tổng luỹ thừa
Tổng luỹ thừa và định lý Wolstenholme
Câu đố mẹo về đo lường
Dựng đa giác đều 15 cạnh
Bò đi con bọ cạp!
Liên phân số Fibonacci
Hằng đẳng thức Pitago
Hình vuông số kỳ diệu của Euler
Tổ hợp
Bài toán kết nối facebookDãy số Fibonacci và một bài toán xếp hình
Hằng đẳng thức về dãy số Fibonacci
Dãy số Fibonacci và tam giác Pascal
Hình học
Định lý PitagoĐịnh lý đường cao tam giác vuông
Định lý Morley
Phương tích
Trục đẳng phương và tâm đẳng phương
Định lý Ceva và Định lý Menelaus
Lục giác kỳ diệu
Định lý Pascal
Định lý Pappus
Cánh bướm Pascal
Bài toán con bướm
Định lý Ngôi Sao Do Thái
Hãy xem xét trường hợp đặc biệt
Bài toán về tìm khoảng cách ngắn nhất và một tính chất của hình elíp
Điểm Fermat của hình tam giác
Điểm Fermat của hình tam giác II
Dựng hình
Dựng hình bằng thước và compaBài toán chia hình tứ giác
Dựng hình ngũ giác đều
Dựng hình đa giác đều
Dựng đa giác đều 15 cạnh
Định lý đường cao tam giác vuông
Thuật toán dựng hình
Công thức lượng giác Gauss cho 17-giác đều
Dựng hình chỉ bằng compa
Dùng compa chia đều đoạn thẳng
Giải tích
Ngày số Pi 2015Chuỗi Taylor
Tổng nghịch đảo bình phương
Giúp bé thông minh
Xì-tin năng động
Tạp chí toán học
Kỹ năng mềm
Tạo lập tài khoản googleCách tạo blog toán học
Học toán trên Wolfram
Dịch tài liệu toán học
Viết văn bản toán học PDF trực tuyến bằng LaTeX
Chia xẻ tài liệu toán học trên Google Drive
Từ khóa » Công Thức Quy Nạp
-
Lý Thuyết Và Bài Tập Về Phương Pháp Quy Nạp Toán Học
-
Phương Pháp Quy Nạp Toán Học Là Gì? Ví Dụ - TopLoigiai
-
Quy Nạp Toán Học – Wikipedia Tiếng Việt
-
Phương Pháp Quy Nạp Toán Học
-
Bài 1: Phương Pháp Quy Nạp Toán Học - Hoc24
-
[PDF] PHƯƠNG PHÁP QUY NẠP TOÁN HỌC - Downloads.
-
[PDF] Chuyên đề: Phương Pháp Quy Nạp Toán Học
-
3.1 CHỨNG MINH BẰNG PHƯƠNG PHÁP QUI NẠP DÃY SỐ.html
-
Giải Toán 11 Bài 1. Phương Pháp Quy Nạp Toán Học - Giải Bài Tập
-
Quy Nạp - Vườn Toán
-
Phương Pháp Quy Nạp Toán Học - Toán 11 | Thầy Nguyễn Công Chính
-
Phương Pháp Quy Nạp Toán Học – MônToán 11 - YouTube
-
Phương Pháp Quy Nạp Toán Học - Dãy Số, Trắc Nghiệm Toán Học Lớp 11
-
Phương Pháp Quy Nạp Toán Học - Giải Bài Tập Đại Số 11 - Itoan