Radian Là Gì? - Vườn Toán
Có thể bạn quan tâm
Trang
- Trang nhà
- Kỹ năng mềm
- Giới thiệu
Radian là gì?
Nhân dịp ngày số $\pi$, chúng ta sẽ tìm hiểu một chút về khái niệm radian. Radian Bình thường trong đời sống hằng ngày, khi nói về góc, chúng ta thường dùng đơn vị độ. Ví dụ góc vuông là 90 độ, góc tam giác đều là 60 độ, góc bẹt là 180 độ. Tuy nhiên, trong toán học, tất cả các hàm số, ví dụ sin(x), cos(x), v.v..., thì góc $x$ luôn luôn được dùng với đơn vị radian. Vậy đơn vị radian là gì? Muốn dùng đơn vị radian, chúng ra vẽ hình tròn đơn vị. Hình tròn đơn vị là hình tròn có bán kính bằng 1. Chúng ta cũng đã biết rằng, theo định nghĩa, thì số $\pi$ chính là độ dài của một nửa đường tròn đơn vị. Độ lớn của một góc theo đơn vị radian chính là độ dài của cung chắn góc đó.Theo đơn vị radian thì $x$ chính là độ dài cung chắn góc |
góc bẹt 180 độ $\to$ nửa đường tròn đơn vị $\to ~~ \pi$Những góc mà chúng ta thường dùng là $$180^{o} ~~\to ~~ \pi$$ $$360^{o} ~~\to ~~ 2\pi$$ $$90^{o} ~~\to ~~ \frac{\pi}{2}$$ $$45^{o} ~~\to ~~ \frac{\pi}{4}$$ $$60^{o} ~~\to ~~ \frac{\pi}{3}$$ $$30^{o} ~~\to ~~ \frac{\pi}{6}$$ Chúng ta tạm dừng ở đây. Kỳ sau chúng ta sẽ quay trở về với chuổi bài hằng đẳng thức. Bài tập về nhà: Ở phần bài tập về nhà, chúng ta sẽ chứng minh đẳng thức Viét về số $\pi$ mà chúng ta đã biết đến từ kỳ trước $$ \frac{2}{\pi} = \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}} \cdots $$ Nhìn hình vẽ sau, chúng ta thấy $ZA = sin(x)$ là đoạn thẳng nên sẽ nhỏ hơn đường cong $ZI = x$ $$ sin(x) < x $$ Đặc biệt, nếu góc $x$ càng nhỏ thì $sin(x)$ càng xấp xỉ bằng $x$. Chúng ta sẽ sử dụng điều này để chứng minh đẳng thức Viét về số $\pi$. 1. Dùng công thức lượng giác cos cho góc gấp đôi $$cos(2x) = 2 cos^2(x) - 1$$ để chứng minh rằng $$ cos \frac{\pi}{4} = \sqrt{\frac{1}{2}} $$ $$ cos \frac{\pi}{8} = \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} $$ $$ cos \frac{\pi}{16} = \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}} $$ Từ đó suy ra $$ \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}} = cos \frac{\pi}{4} \cdot cos \frac{\pi}{8} \cdot cos \frac{\pi}{16} $$ 2. Dùng công thức lượng giác sin cho góc gấp đôi $$sin(2x) = 2 sin(x) ~ cos(x)$$ để chứng minh rằng $$ cos \frac{\pi}{4} \cdot cos \frac{\pi}{8} \cdot cos \frac{\pi}{16} = \frac{\frac{1}{8}}{sin \frac{\pi}{16} } = \frac{2}{\pi} \cdot \frac{\frac{\pi}{16}}{sin \frac{\pi}{16} } $$ 3. Như ở trên chúng ta đã nói, vì góc $\frac{\pi}{16}$ rất nhỏ nên suy ra $$ sin \frac{\pi}{16} \approx \frac{\pi}{16}$$ và $$ cos \frac{\pi}{4} \cdot cos \frac{\pi}{8} \cdot cos \frac{\pi}{16} \approx \frac{2}{\pi} $$ 4. Một cách tổng quát, chứng minh rằng $$ cos \frac{\pi}{4} \cdot cos \frac{\pi}{8} \cdots cos \frac{\pi}{2^n} = \frac{2}{\pi} \cdot \frac{\frac{\pi}{2^n}}{sin \frac{\pi}{2^n} } $$ và $$ \lim_{n \to \infty} cos \frac{\pi}{4} \cdot cos \frac{\pi}{8} \cdots cos \frac{\pi}{2^n} = \frac{2}{\pi} $$ Đây chính là đẳng thức Viét về số $\pi$ $$\sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}} \cdots = \frac{2}{\pi}$$ Labels: công thức Viét, lượng giác, pi, radian, Vieta Bài đăng Mới hơn Bài đăng Cũ hơn Trang chủ
Ủng hộ Vườn Toán trên facebook
Lưu trữ Blog
- ► 2017 (1)
- ► tháng 2 (1)
- ► 2015 (12)
- ► tháng 12 (1)
- ► tháng 11 (1)
- ► tháng 10 (1)
- ► tháng 7 (1)
- ► tháng 5 (2)
- ► tháng 4 (4)
- ► tháng 3 (1)
- ► tháng 1 (1)
- ► 2014 (12)
- ► tháng 12 (1)
- ► tháng 11 (3)
- ► tháng 8 (1)
- ► tháng 7 (1)
- ► tháng 6 (1)
- ► tháng 4 (1)
- ► tháng 3 (1)
- ► tháng 2 (2)
- ► tháng 1 (1)
- ► 2013 (26)
- ► tháng 10 (3)
- ► tháng 9 (2)
- ► tháng 8 (2)
- ► tháng 7 (2)
- ► tháng 6 (3)
- ► tháng 5 (3)
- ► tháng 4 (3)
- ► tháng 3 (3)
- ► tháng 2 (3)
- ► tháng 1 (2)
- ► 2012 (36)
- ► tháng 12 (1)
- ► tháng 11 (7)
- ► tháng 10 (3)
- ► tháng 9 (6)
- ► tháng 8 (5)
- ► tháng 7 (4)
- ► tháng 6 (6)
- ► tháng 5 (4)
- ► 2011 (7)
- ► tháng 1 (7)
English Version
Bài toán kết nối facebook
Phép nhân thời đồ đá
Mắt Biếc Hồ Thu
Lục giác kỳ diệu
Định lý Pitago
1 = 2012 = 2013
Dãy số Fibonacci và một bài toán xếp hình
James vẽ hình
Câu hỏi của James
Hình vuông số chính phương kỳ diệu của Vianney!
Câu đố mẹo về đo lường
Công thức lượng giác Gauss cho 17-giác đều
Chào năm mới 2014
Chào năm mới 2015
Chào năm mới 2016
Không gian 4 chiều là gì?
Dựng hình đa giác đều
Dựng đa giác đều 15 cạnh
Ngày số Pi (2015)
Ngày số Pi (2016)
0.9999999... có bằng 1 không? (2015)
Hình tam giác
Bàn cờ vua và kim tự tháp
Dãy số
Dãy số - Phần 1Dãy số - Phần 2
Dãy số - Phần 3
Dãy số - Phần 4
Dãy số - Phần 5
Dãy số - Phần 6
Dãy số - Phần 7
Dãy số - Phần 8
Dãy số - Phần 9
Đại số
Tam giác PascalQuy nạp
Quy nạp II
Quy nạp III
Nhị thức Newton
1 = 2012 = 2013
Đa thức nội suy Newton
Đa thức nội suy Lagrange
Chứng minh Định lý Wilson bằng công thức nội suy
Tổng luỹ thừa
Số phức
Số phứcCông thức Moivre
Lượng giác
Công thức lượng giác cho góc bội
Công thức lượng giác Gauss cho 17-giác đều
Ngày số Pi (2016)
Radian là gì?
Số học
modulo - Phần 1
modulo - Phần 2
modulo - Phần 3
modulo - Phần 4
modulo - Phần 5
modulo - Phần 6
Số nguyên tố
Định lý Euclid về số nguyên tố
Một vài bài toán về số nguyên tố
Định lý Wilson
Bộ số Pitago
Modulo cho số hữu tỷ
Modulo cho số hữu tỷ II
Chứng minh lại định lý Wilson
Bổ đề Bezout
Thuật toán Euclid
Tổng luỹ thừa
Tổng luỹ thừa và định lý Wolstenholme
Câu đố mẹo về đo lường
Dựng đa giác đều 15 cạnh
Bò đi con bọ cạp!
Liên phân số Fibonacci
Hằng đẳng thức Pitago
Hình vuông số kỳ diệu của Euler
Tổ hợp
Bài toán kết nối facebookDãy số Fibonacci và một bài toán xếp hình
Hằng đẳng thức về dãy số Fibonacci
Dãy số Fibonacci và tam giác Pascal
Hình học
Định lý PitagoĐịnh lý đường cao tam giác vuông
Định lý Morley
Phương tích
Trục đẳng phương và tâm đẳng phương
Định lý Ceva và Định lý Menelaus
Lục giác kỳ diệu
Định lý Pascal
Định lý Pappus
Cánh bướm Pascal
Bài toán con bướm
Định lý Ngôi Sao Do Thái
Hãy xem xét trường hợp đặc biệt
Bài toán về tìm khoảng cách ngắn nhất và một tính chất của hình elíp
Điểm Fermat của hình tam giác
Điểm Fermat của hình tam giác II
Dựng hình
Dựng hình bằng thước và compaBài toán chia hình tứ giác
Dựng hình ngũ giác đều
Dựng hình đa giác đều
Dựng đa giác đều 15 cạnh
Định lý đường cao tam giác vuông
Thuật toán dựng hình
Công thức lượng giác Gauss cho 17-giác đều
Dựng hình chỉ bằng compa
Dùng compa chia đều đoạn thẳng
Giải tích
Ngày số Pi 2015Chuỗi Taylor
Tổng nghịch đảo bình phương
Giúp bé thông minh
Xì-tin năng động
Tạp chí toán học
Kỹ năng mềm
Tạo lập tài khoản googleCách tạo blog toán học
Học toán trên Wolfram
Dịch tài liệu toán học
Viết văn bản toán học PDF trực tuyến bằng LaTeX
Chia xẻ tài liệu toán học trên Google Drive
Từ khóa » đơn Vị đo Góc Radian
-
Radian – Wikipedia Tiếng Việt
-
Đơn Vị đo Góc: Radian (rad), độ Và Công Thức Liên Hệ Giữa Chúng
-
Cách để Chuyển đổi Từ độ Sang Radian - WikiHow
-
Đơn Vị đo Góc Là Gì? (giải Thích đơn Giản Nhất) - Fujihatsu
-
Đơn Vị đo Góc: Radian (rad), độ Và Công Thức ...
-
Quy đổi Từ Độ Sang Radian
-
Chuyển đổi đơn Vị đo Góc - Phép Tính Online
-
Đơn Vị đo Góc Và Cung Tròn, độ Dài Cung Tròn - Vật Lí Phổ Thông
-
Đơn Vị đo Độ - Radian, Góc, Cung Và đường Tròn Lượng Giác
-
Phân Biệt Các đơn Vị đo Góc RADIAN, ĐỘ, GRAD - Công Thức Vật Lý
-
Radian – Wikipedia Tiếng Việt
-
Lý Thuyết đơn Vị đo Góc Và Cung Tròn, độ Dài Cung Tròn Toán 10
-
Lý Thuyết Góc Và Cung Lượng Giác | SGK Toán Lớp 10