[Sách Giải] Bài 10: Số Nguyên Tố. Hợp Số. Phân Tích Một Số Ra Thừa ...
Có thể bạn quan tâm
Xem toàn bộ tài liệu Lớp 6 – Chân Trời Sáng Tạo: tại đây
Hoạt động khởi động trang 31 Toán lớp 6 Tập 1 – Chân trời sáng tạo: Những số tự nhiên nào lớn hơn 1 và có ít ước nhất?
Lời giải:
Những số tự nhiên lớn hơn 1 và có ít ước nhất là 2; 3; 5; 7; 11; 13; …
Sau bài học này ta sẽ biết các số trên được gọi là số nguyên tố.
Hoạt động khám phá trang 31 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
a) Tìm tất cả các ước của các số từ 1 đến 10.
b) Sắp xếp các số từ 1 đến 10 thành ba nhóm:
– Nhóm 1 bao gồm các số chỉ có một ước.
– Nhóm 2 bao gồm các số chỉ có hai ước khác nhau.
– Nhóm 3 bao gồm các số có nhiều hơn hai ước khác nhau.
Lời giải:
a) Ư(1) = {1};
Ư(2) = {1; 2};
Ư(3) = {1; 3};
Ư(4) = {1; 2; 4};
Ư(5) = {1; 5};
Ư(6) = {1; 2; 3; 6};
Ư(7) = {1; 7};
Ư(8) = {1; 2; 4; 8};
Ư(9) = {1; 3; 9};
Ư(10) = {1; 2; 5; 10}.
b)
– Nhóm 1 chỉ có số 1.
– Nhóm 2 bao gồm 2; 3; 5; 7.
– Nhóm 3 bao gồm 4; 6; 8; 9; 10.
Thực hành 1 trang 31 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
a) Trong các số 11; 12; 25, số nào là số nguyên tố, số nào là hợp số? Vì sao?
b) Lan nói rằng: “Nếu một số tự nhiên không là số nguyên tố thì nó phải là hợp số”. Em có đồng ý với Lan không? Vì sao?
Lời giải:
a) Ta có: Ư(11) = {1; 11}; Ư(12) = {1; 2; 3; 4; 6; 12} và Ư(25) = {1; 5; 25}.
Số nguyên tố là 11 vì 11 lớn hơn 1 và chỉ có hai ước là 1 và chính nó.
Hợp số là: 12; 25 vì 12 có nhiều hơn 2 ước, còn 25 có 3 ước.
b) Không. Vì còn có số 0 và số 1 không phải là số nguyên tố và cũng không là hợp số.
Thực hành 2 trang 33 Toán lớp 6 Tập 1 – Chân trời sáng tạo: Phân tích số 60 ra thừa số nguyên tố theo cột dọc.
Lời giải:
Phân tích số 60 ra thừa số nguyên tố theo cột dọc, ta được:
Vậy 60 = 2.2.3.5 = 22.31.51.
Thực hành 3 trang 33 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Tìm các số tự nhiên lớn hơn 1 để thay thế dấu ? trong ô vuông ở mỗi sơ đồ cây dưới đây, rồi viết gọn dạng phân tích ra thừa số nguyên tố của mỗi số 18; 42; 280 bằng cách dùng lũy thừa.
a)
18 = ?
b)
42 = ?
c)
280 = ?
Lời giải:
a)
18 = 2.32.
b)
42 = 2.3.7
c)
280 = 23.5.7
Bài 1 trang 33 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Mỗi số sau là số nguyên tố hay hợp số? Giải thích.
a) 213; b) 245;
c) 3 737; d) 67.
Lời giải:
a) Vì 213 có ước là 3 khác 1 và chính nó nên 213 có nhiều hơn 2 ước. Do đó 213 là hợp số.
b) Vì 245 có ước là 5 khác 1 và chính nó nên 245 có nhiều hơn 2 ước. Do đó 245 là hợp số.
c) Vì 3 737 có ước là 37 khác 1 và chính nó nên 3737 có nhiều hơn 2 ước. Do đó 3737 là hợp số.
d) Vì 67 chỉ có đúng hai ước là 1 và chính nó nên 67 là số nguyên tố.
Bài 2 trang 33 Toán lớp 6 Tập 1 – Chân trời sáng tạo: Lớp của bạn Hoàng có 37 học sinh. Trong một lần thi đồng diễn thể dục, các bạn lớp Hoàng muốn xếp thành các hàng có cùng số bạn để được một khối hình chữ nhất có ít nhất là hai hàng. Hỏi các bạn có thực hiện được không? Em hãy giải thích.
Lời giải:
Ta nhận thấy 37 chỉ có hai ước là 1 và chính nó nên 37 là số nguyên tố mà cần ít nhất hai hàng nên không thể xếp các học sinh trong lớp thành các hàng có cùng số bạn.
Bài 3 trang 34 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Hãy cho ví dụ về:
a) Hai số tự nhiên liên tiếp đều là số nguyên tố.
b) Ba số lẻ liên tiếp đều là số nguyên tố.
Lời giải:
a) Hai số tự nhiên liên tiếp đều là số nguyên tố là 2 và 3.
b) Ba số lẻ liên tiếp đều là số nguyên tố là 3; 5; 7.
Bài 4 trang 34 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Mỗi khẳng định sau đúng hay sai?
a) Tích của hai số nguyên tố luôn là một số lẻ.
b) Tích của hai số nguyên tố có thể là một số chẵn.
c) Tích của hai số nguyên tố có thể là một số nguyên tố.
Lời giải:
a) Ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố luôn là một số lẻ” là SAI.
b) Như ý a ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố có thể là một số chẵn” là ĐÚNG.
c) Tích của hai số nguyên tố a, b sẽ có các ước là 1, a, b và ab. Do đó tích của chúng có nhiều hơn hai ước nên không là một số nguyên tố.
Vì vậy khẳng định “Tích của hai số nguyên tố có thể là một số nguyên tố” là SAI.
Bài 5 trang 34 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Phân tích mỗi số sau ra thừa số nguyên tố rồi cho biết mỗi số chia hết cho các số nguyên tố nào?
a) 80; b) 120;
c) 225; d) 400.
Lời giải:
a)
80 = 2.2.2.2.5 = 24.5.
80 có thể chia hết cho các số nguyên tố là 2 và 5.
b)
120 = 2.2.2.3.5 = 23.3.5
120 có thể chia hết cho các số nguyên tố là 2, 3, 5.
c)
225 = 3.3.5.5 = 32.52.
225 có thể chia hết cho các số nguyên tố là 3 và 5.
d)
400 = 2.2.2.2.5.5 = 24.52.
400 có thể chia hết cho các số nguyên tố là 2 và 5.
Bài 6 trang 34 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Phân tích mỗi số sau ra thừa số nguyên tố rồi tìm tập hợp các ước của mỗi số.
a) 30; b) 225;
c) 210; d) 242.
Lời giải:
a)
30 = 2 . 3 . 5.
Khi đó ta tìm được các ước của 30 là 1; 2; 3; 5; 6; 10; 15; 30
Vậy ta viết Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.
b)
225 = 3.3.5.5 = 32.52.
Khi đó ta tìm được các ước của 225 là: 1; 3; 5; 9; 15; 25; 45; 75; 225
Khi đó ta viết Ư(225) = {1; 3; 5; 9; 15; 25; 45; 75; 225}.
c)
210 = 2.3.5.7.
Khi đó ta tìm được các ước của 210 là: 1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210.
Vậy
Ư(210) = {1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210}.
d)
242 = 2.11.11 = 2.112.
Ư(242) = {1; 2; 11; 22; 121; 242}.
Bài 7 trang 34 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Cho số a = 23.32.7 Trong các số 4, 7, 9, 21, 24, 34, 49 số nào là ước của a?
Lời giải:
Phân tích các số trên ra thừa số nguyên tố ta được:
4 = 22, 7 = 7, 9 = 32, 21 = 3.7; 24 = 23.3; 34 = 2.17; 49 = 72.
Số nào có chung thừa số nguyên tố và thừa số đó có số mũ nhỏ hơn các thừa số nguyên tố trong phân tích của a thì sẽ là ước của a. Do đó ta thấy các ước của a là: 4; 7; 9; 21; 24.
Bài 8 trang 34 Toán lớp 6 Tập 1 – Chân trời sáng tạo: Bình dùng một khay hình vuông cạnh 60 cm để xếp bánh chưng. Mỗi chiếc bánh chưng hình vuông có cạnh 15 cm. Bình có thể dùng những chiếc bánh chưng để xếp vừa khít vào khay này không? Giải thích.
Lời giải:
Vì 60 chia hết cho 15 hay 15 là ước của 60 nên Bình hoàn toàn có thể dùng những chiếc bánh chưng để xếp vừa khít vào khay.
Bài giải này có hữu ích với bạn không?
Bấm vào một ngôi sao để đánh giá!
Action: Post ID: Post Nonce: ☆ ☆ ☆ ☆ ☆ Processing your rating... Đánh giá trung bình {{avgRating}} / 5. Số lượt đánh giá: {{voteCount}} {{successMsg}} {{#errorMsg}} {{.}} {{/errorMsg}} There was an error rating this post!Đánh giá trung bình 4 / 5. Số lượt đánh giá: 1088
Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.
Từ khóa » Số 3737 Là Số Nguyên Tố Hay Hợp Số
-
3737 Là Số Nguyên Tố Hay Hợp Số. Giải Thích. - Hoc24
-
3737 Là Số Nguyên Tố Hay Hợp Số. Giải Thích. - Hoc24
-
Giải Bài 1 Trang 33 SGK Toán 6 Chân Trời Sáng Tạo Tập 1 - Blog
-
1.Các Số Sau Là Số Nguyên Tố Hay Hợp Tố?312 ; 213 ; 435 ; 417 ; 3737
-
Mỗi Số Sau Là Số Nguyên Tố Hay Hợp Số? Giải Thích - Haylamdo
-
Cho Biết Số Sau Là Số Nguyên Tố Hay Hợp Số? Giải Thích: 3737 - Hoc247
-
Mỗi Số Sau Là Số Nguyên Tố Hay Hợp Số? Giải Thích
-
[Chân Trời Sáng Tạo] Giải Toán 6 Bài 10: Số Nguyên Tố. Hợp Số. Phân ...
-
Mỗi Số Sau Là Số Nguyên Tố Hay Hợp Số? Giải Thích
-
B / 245 ; C / 3737 ; D / 67 2 . Hãy Cho Ví Dụ Về : A / Hai Số Tự Nhiên Li
-
Giải Em Vs Cảm ơn đc Vote 5 Sao
-
Giải Câu 1 Trang 57 Toán VNEN 6 Tập 1 | Tech12h
-
Mỗi Số Sau Là Số Nguyên Tố Hay Hợp Số - Toán Học Lớp 6