Sách Giải Bài Tập Toán Lớp 11 Bài 5: Hai Hình Bằng Nhau (Nâng ...
Có thể bạn quan tâm
Xem toàn bộ tài liệu Lớp 11: tại đây
Xem thêm các sách tham khảo liên quan:
- Sách giáo khoa đại số và giải tích 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11
- Sách giáo khoa hình học 11
- Sách Giáo Viên Hình Học Lớp 11
- Giải Toán Lớp 11
- Giải Sách Bài Tập Toán Lớp 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách giáo khoa đại số và giải tích 11 nâng cao
- Sách giáo khoa hình học 11 nâng cao
- Sách Giáo Viên Hình Học Lớp 11 Nâng Cao
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách Bài Tập Hình Học Lớp 11 Nâng Cao
Sách giải toán 11 Bài 5: Hai hình bằng nhau (Nâng Cao) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 20 (trang 23 sgk Hình học 11 nâng cao): Chứng tỏ hai hình chữ nhât cùng kích thước (cùng chiều dài và chiều rộng) thì bằng nhau
Lời giải:
Giải bài 20 trang 23 SGK Hình học 11 nâng cao Giải bài 20 trang 23 SGK Hình học 11 nâng cao
Giải sử hai hình chữ nhật ABCD và A’B’C’D’ có AB = CD = A’B’ = C’D’, AD = BC = A’D’ = B’C’. Khi đó ABC và A’B’C’ là hai tam giác vuông bằng nhau do đó có phép dời hình F biến tam giác ABC thành tam giác A’B’C’. Khi đó phép dời hình F biến trung điểm O của AC thành trung điểm O’ của A’C’. Nhưng vì O và O’ lần lượt cũng là trung điểm BD và B’D’ nên F cũng biến D thành D’. Vậy F biến ABCD thành A’B’C’D’, nên theo định nghĩa hai hình chữ nhật đó bằng nhau
X→
Bài 21 (trang 23 sgk Hình học 11 nâng cao):
a) Chứng tỏ rằng hai tứ giác có các cặp cạnh tương ứng bằng nhau và một cặp đường chéo tương ứng bằng nhau thì bằng nhau
b) Chứng minh rằng hai tứ giác có các cặp cạnh tương ứng bằng nhau và một cặp góc tương ứng bằng nhau thì bằng nhau
c) Hai tứ giác có các cặp canh tương ứng bằng nhau thì có bằng nhau hay không?
Lời giải:
Giải bài 21 trang 23 SGK Hình học 11 nâng cao Giải bài 21 trang 23 SGK Hình học 11 nâng cao
a) Giả sử hai tứ giác lối ABCD và A’B’C’D’ có AB =A’B’, BC=B’C’, CD=C’D’, DA=D’A’ VÀ AC=A’C’. Khi đó hai tam giác ABC và A’B’C’ bằng nhau nên có phép dời hình F biến 3 điểm A, B, C lần lượt thành ba điểm A’, B’, C. Gọi D’’ là điểm đối xứng với D’ qua đường thẳng A’C’ thì 2 tam giác A’C’D’ và A’C’D’’ bằng nhau và theo giả thiết, cùng bằng tam giác ACD. Bởi vậy phép F chỉ có thể biến điểm D thành điểm D’ hoặc D’’ (do phép dời hình bảo toàn độ dài đoạn thẳng)
Vì ABCD là tứ giác lồi nên hai đoạn thẳng AC và BD cắt nhau. A’B’C’D’ cũng là tứ diện lồi nên hai đoạn thẳng A’C’ và B’D’ cắt nhau và do đó hai đoạn thẳng A’C’ và B’D’’ không cắt nhau. Từ đó suy ra F biến D thành D’. Vậy F biến tứ giác ABCD thành tứ giác A’B’C’D ’ và do đó 2 tứ giác đó bằng nhau
b) Giả sử 2 tứ giác ABCD và A’B’C’D’ có AB = A’B’, BC = B’C’ , CD = C’D’, DA = D’A’ và góc ABC bằng A’B’C. Khi đó AC = A’C’ và ta đưa về trường hợp ở câu a
c) Có thể không bằng nhau. Hai hình thoi có cạnh bằng nhau nhưng có thể là hai hình không bằng nhau ( vì phép dời hình biến góc thành góc bằng nó)
X→
Bài 22 (trang 23 sgk Hình học 11 nâng cao): Đa giác lồi n cạnh gọi là n-giác đều nếu tất cả các cạnh của nó bằng nhau và tất cả các góc của nó bằng nhau. Chứng tỏ rằng hai n-giác đều bằng nhau khi và chỉ khi chúng có cạnh bằng nhau
Lời giải:
Giải bài 22 trang 23 SGK Hình học 11 nâng cao Giải bài 22 trang 23 SGK Hình học 11 nâng cao
Theo định nghĩa. Hai n-giác đều bằng nhau thì cạnh bằng nhau. Ngược lại giả sử hai n-giác đều A1A2…An và A’1A’2…A’n có cạnh bằng nhau. Khi đó nếu gọi O và O’ lần lượt là tâm các đường tròn ngoại tiếp hai đa giác đó thì hai tam giác OA1A2 và O’A’1A’2 bằng nhau.
Vậy có phép dời hình F biến tam giác OA1A2 thành tam giác O’A’1A’2. Vì hai tam giác OA2A3 và O’A’2A’3 cùng bằng nhau nên F biến điểm A3 thành điểm A’3. (Vì A3 không thể biến thành A’1).
Lập luận tương tự ta cũng có F biến các điểm A4….An lần lượt thành các điểm A’4 ….A’n. Như vậy hai đa giác đều đã cho bằng nhau.
X→
Bài 23 (trang 23 sgk Hình học 11 nâng cao): Hình H1 gồm 3 đường tròn (O1; r1), ( O2; r2), ( O3; r3) đôi một tiếp xúc ngoài với nhau. Hình H2 gồm ba đường tròn (I1; r1), ( I2; r2), ( I3; r3) đôi một tiếp xúc ngoài với nhau. Chứng tỏ rằng hai hình H1 và H2 bằng nhau.
Lời giải:
Giải bài 23 trang 23 SGK Hình học 11 nâng cao Giải bài 23 trang 23 SGK Hình học 11 nâng cao
Ta có : O1O2 = r1 + r2 = I1I2
O2O3 = r2 + r3 = I2I3
O3O1 = r3 + r1 = I3I1
Suy ra ΔO1O2O3= ΔI1I2I3
Nên có phép dời hình F biến ba điểm O1,O2,O3lần lượt ba điểm I1,I2,I3. Hiển nhiên khi đo F biến ba đường tròn (O1; r1), ( O2; r2), ( O3; r3) lần lượng thành ba đường tròn (I1; r1), ( I2; r2), ( I3; r3) tức là biến hình H1 thành hình H2 . Vậy hai hình H1 và H2 bằng nhau
X→
Bài 24 (trang 23 sgk Hình học 11 nâng cao): Cho hai hình bình hành. Hãy vẽ một đường thẳng chia mỗi hình bình hành đó thành hai hình bình hành.
Lời giải:
Giải bài 24 trang 23 SGK Hình học 11 nâng cao Giải bài 24 trang 23 SGK Hình học 11 nâng cao
Một đường thẳng đi qua tâm O của hình bình hành thì chia hình bình hành đó thành hai phần bằng nhau, vì phép đối xứng qua tâm O sẽ biến phần này thành phần kia. Bởi vậy, nếu cho hai hình bình hành, ta chỉ cần vẽ đường thẳng đi qua tâm chúng thì đường thẳng đó sẻ chia mỗi hình bình hành thành hai phần bằng nhau
Nếu tâm hai hình bình hành trùng nhau thì mọi đường thẳng đi qua tâm đó đều chia mỗi hình bình hành thành hai phần bằng nhau
Bài giải này có hữu ích với bạn không?
Bấm vào một ngôi sao để đánh giá!
Action: Post ID: Post Nonce: ☆ ☆ ☆ ☆ ☆ Processing your rating... Đánh giá trung bình {{avgRating}} / 5. Số lượt đánh giá: {{voteCount}} {{successMsg}} {{#errorMsg}} {{.}} {{/errorMsg}} There was an error rating this post!Đánh giá trung bình 4 / 5. Số lượt đánh giá: 1177
Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.
Từ khóa » Hai Tứ Giác Bằng Nhau Khi Nào
-
Chứng Minh Hai Hình Bằng Nhau | Cộng đồng Học Sinh Việt Nam
-
Bài 5. Hai Hình Bằng Nhau | Loigiaihay
-
A. Chứng Minh Rằng Hai Tứ Giác Lồi Có Cặp Cạnh Tương ứng Bằng ...
-
Ôn Thi Vào Lớp 10: Bốn Cách Chứng Minh Tứ Giác Trong Toán Hình ...
-
Hai Tam Giác Bằng Nhau Khi Và Chỉ Khi Nào - Nội Thất Hằng Phát
-
Tứ Giác – Wikipedia Tiếng Việt
-
Trong Các Mệnh đề Sau, Mệnh đề Nào Sai? Hai Tam Giác Bằng Nhau ...
-
Hai Tam Giác Bằng Nhau Khi Và Chỉ Khi Nào - Thả Rông
-
Định Nghĩa Hình Tứ Giác, Các Hình Tứ Giác Phổ Biến Và đặc điểm
-
Phương Pháp Chứng Minh 2 Góc Bằng Nhau - Thủ Thuật
-
[LỜI GIẢI] Trong Các Mệnh đề Sau, Mệnh đề Nào Sai ? - Tự Học 365
-
[Nhóm 1] Hai Hình Bằng Nhau - Hung Nguyen
-
[ Hình Tứ Giác ] Cách Nhận Biết Và Các Mẫu Hình Tứ Giác
-
Tứ Giác Là Gì? Những Hình Tứ Giác Phổ Biến Hiện Nay