Sách Giải Bài Tập Toán Lớp 8 Bài 1: Tứ Giác

Xem toàn bộ tài liệu Lớp 8: tại đây

Xem thêm các sách tham khảo liên quan:

  • Giải Sách Bài Tập Toán Lớp 8
  • Đề Kiểm Tra Toán Lớp 8
  • Sách Giáo Khoa Toán lớp 8 tập 1
  • Sách Giáo Khoa Toán lớp 8 tập 2
  • Sách Giáo Viên Toán Lớp 8 Tập 1
  • Sách Bài Tập Toán Lớp 8 Tập 2

Sách giải toán 8 Bài 1: Tứ giác giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 8 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 64: Trong các tứ giác ở hình 1, tứ giác nào luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác ?

Lời giải

a) tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác

b) tứ giác nằm trên hai nửa mặt phẳng có bờ BC (hoặc bờ CD)

c) tứ giác nằm trên hai nửa mặt phẳng có bờ AD (hoặc bờ BC)

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 65: Quan sát tứ giác ABCD ở hình 3 rồi điền vào chỗ trống:

a) Hai đỉnh kề nhau: A và B, …

Hai đỉnh đối nhau: A và C, …

b) Đường chéo (đoạn thẳng nối hai đỉnh đối nhau): AC, …

c) Hai cạnh kề nhau: AB và BC, …

Hai cạnh đối nhau: AB và CD, …

d) Góc: ∠A , …

Hai góc đối nhau: ∠A và ∠C , …

e) Điểm nằm trong tứ giác (điểm trong của tứ giác): M, …

Điểm nằm ngoài tứ giác (điểm ngoài của tứ giác): N, …

Lời giải

a) Hai đỉnh kề nhau: A và B, B và C, C và D, D và A

Hai đỉnh đối nhau: A và C, B và D

b) Đường chéo (đoạn thẳng nối hai đỉnh đối nhau): AC, BD

c) Hai cạnh kề nhau: AB và BC, BC và CD, CD và DA, DA và AB

Hai cạnh đối nhau: AB và CD, AD và BC

d) Góc: ∠A , ∠B , ∠C , ∠D

Hai góc đối nhau: ∠A và ∠C , ∠B và ∠D

e) Điểm nằm trong tứ giác (điểm trong của tứ giác): M, P

Điểm nằm ngoài tứ giác (điểm ngoài của tứ giác): N, Q

Trả lời câu hỏi Toán 8 Tập 1 Bài 1 trang 65:

a) Nhắc lại định lý về tổng ba góc của một tam giác

b) Vẽ tứ giác ABCD tùy ý. Dựa vào định lý về tổng ba góc của một tam giác, hãy tính tổng A + B + C + D

Lời giải

a) Trong một tam giác, tổng ba góc là 180o

b)

ΔABC có ∠A1 + ∠B + ∠C1 = 180o

ΔADC có ∠A2 + ∠D + ∠C2 = 180o

⇒ ∠A1 + ∠B + ∠C1 + ∠A2 + ∠D + ∠C2 = 180o + 180o

⇒ (∠A1 + ∠A2 ) + ∠B + (∠C1 + ∠C2) + ∠D = 360o

⇒ ∠A + ∠B + ∠C + ∠D = 360o

Bài 1 (trang 66 SGK Toán 8 Tập 1): Tìm x ở hình 5, hình 6:

Lời giải:

Ta có định lý: Tổng bốn góc trong một tứ giác bằng 360º.

+ Hình 5a: Áp dụng định lý trong tứ giác ABCD ta có:

x + 110º + 120º + 80º = 360º

⇒ x = 360º – 110º – 120º – 80º = 50º

+ Hình 5b: Áp dụng định lý trong tứ giác EFGH ta có:

x + 90º + 90º + 90º = 360º

⇒ x = 360º – 90º – 90º – 90º = 90º.

+ Hình 5c: Áp dụng định lý trong tứ giác ABDE ta có:

x + 90º + 65º + 90º = 360º

⇒ x = 360º – 90º – 65º – 90º = 115º

+ Hình 5d:

kề bù với góc 60º ⇒

kề bù với góc 105º ⇒

là góc vuông ⇒

Áp dụng định lý trong tứ giác IKMN ta có:

x + 90º + 120º + 75º = 360º

⇒ x = 360º – 90º – 120º – 75º = 75º

+ Hình 6a: Áp dụng định lý trong tứ giác PQRS ta có:

x + x + 65º + 95º = 360º

⇒ 2x + 160º = 360º

⇒ 2x = 200º

⇒ x = 100º

+ Hình 6b: Áp dụng định lý trong tứ giác MNPQ ta có:

x + 2x + 3x + 4x = 360º

⇒ 10x = 360º

⇒ x = 36º.

Các bài giải Toán 8 Bài 1 khác

Bài 2 (trang 66 SGK Toán 8 Tập 1): Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác.

a) Tính các góc ngoài của tứ giác ở hình 7a.

b) Tính tổng các góc ngoài của tứ giác ở hình 7b (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài):

c) Có nhận xét gì về tổng các góc ngoài của tứ giác?

Lời giải:

a) + Góc ngoài tại A là góc A1:

+ Góc ngoài tại B là góc B1:

+ Góc ngoài tại C là góc C1:

+ Góc ngoài tại D là góc D1:

Theo định lý tổng các góc trong một tứ giác bằng 360º ta có:

Lại có:

Vậy góc ngoài tại D bằng 105º.

b) Hình 7b:

Ta có:

Mà theo định lý tổng bốn góc trong một tứ giác bằng 360º ta có:

c) Nhận xét: Tổng các góc ngoài của tứ giác cũng bằng 360º.

Các bài giải Toán 8 Bài 1 khác

Bài 3 (trang 67 SGK Toán 8 Tập 1): Ta gọi tứ giác ABCD trên hình 8 có AB = AD, CB = CD là hình “cái diều”.

a) Chứng minh rằng AC là đường trung trực của BD.

b) Tính B̂,D̂ biết rằng  = 100º, Ĉ = 60º

Lời giải:

a) Ta có:

AB = AD (gt) ⇒ A thuộc đường trung trực của BD

CB = CD (gt) ⇒ C thuộc đường trung trực của BD

Vậy AC là đường trung trực của BD

b) Xét ΔABC và ΔADC có:

   AB = AD (gt)

   BC = DC (gt)

   AC cạnh chung

⇒ ΔABC = ΔADC (c.c.c)

Các bài giải Toán 8 Bài 1 khác

Bài 4 (trang 67 SGK Toán 8 Tập 1): Dựa vào cách vẽ các tam giác đã học, hãy vẽ lại các tứ giác ở hình 9, hình 10 vào vở.

Lời giải:

– Cách vẽ hình 9:

+ Vẽ đoạn thẳng AB = 3cm

+ Quay cung tròn tâm A, bán kính 3cm, cung tròn tâm B bán kính 3,5cm. Hai cung tròn này cắt nhau tại C.

+ Quay cung tròn tâm C bán kính 2cm và cung tròn tâm A bán kính 1,5cm. Hai cung tròn này cắt nhau tại D.

+ Nối các đoạn BC, AC, CD, AD ta được hình cần vẽ.

– Cách vẽ hình 10:

+ Vẽ góc . Trên tia Nx, lấy điểm M sao cho MN = 4cm, trên tia Ny lấy điểm P sao cho NP = 2cm.

+ Vẽ cung tròn tâm P bán kính 1,5cm và cung tròn tâm M bán kính 3cm. Hai cung tròn này cắt nhau tại Q.

+ Nối PQ, MQ ta được hình cần vẽ.

Các bài giải Toán 8 Bài 1 khác

Bài 5 (trang 67 SGK Toán 8 Tập 1): Đố. Đố em tìm thấy vị trí của “kho báu” trên hình 11, biết rằng kho báu nằm tại giao điểm các đường chéo của tứ giác ABCD, trong đó các đỉnh của tứ giác có tọa độ như sau: A(3; 2), B(2; 7), C(6; 8), D(8; 5).

Lời giải:

+ Xác định các điểm A, B, C, D trong hệ trục tọa độ như trên hình vẽ.

+ Hai đường chéo của tứ giác là AC và BD.

+ Vị trí kho báu là giao điểm của AC và BD và là điểm E trên hình vẽ.

+ Nhìn trên hình vẽ thấy điểm E có tọa độ (5; 6)

Vậy vị trí tọa độ của kho báu là (5; 6)

Các bài giải Toán 8 Bài 1 khác

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Action: Post ID: Post Nonce: ☆ ☆ ☆ ☆ ☆ Processing your rating... Đánh giá trung bình {{avgRating}} / 5. Số lượt đánh giá: {{voteCount}} {{successMsg}} {{#errorMsg}} {{.}} {{/errorMsg}} There was an error rating this post!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 938

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

Từ khóa » Toán Tứ Giác Lớp 8