一种针对SARS-CoV-2 变体的广泛中和人源化ACE2 靶向抗体 - X-MOL

xmol-logo 搜索 当前位置: X-MOL 学术 › Nat. Commun. › 论文详情 Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.) A broadly neutralizing humanized ACE2-targeting antibody against SARS-CoV-2 variants Nature Communications ( IF 15.7 ) Pub Date : 2021-08-17 , DOI: 10.1038/s41467-021-25331-x Yanyun Du
  • Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
,
Rui Shi
  • CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
,
Ying Zhang
  • State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
,
Xiaomin Duan
  • CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  • University of Chinese Academy of Sciences, Beijing, China.
,
Li Li
  • Shanghai Junshi Biosciences Co., Ltd, Shanghai, China.
,
Jing Zhang
  • Shanghai Junshi Biosciences Co., Ltd, Shanghai, China.
,
Fengze Wang
  • CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  • University of Chinese Academy of Sciences, Beijing, China.
,
Ruixue Zhang
  • State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
,
Hao Shen
  • State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
,
Yue Wang
  • CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  • University of Chinese Academy of Sciences, Beijing, China.
,
Zheng Wu
  • CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  • Institute of Physical Science and Information, Anhui University, Hefei, China.
,
Qianwen Peng
  • Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
,
Ting Pan
  • Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
,
Wanwei Sun
  • Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
,
Weijin Huang
  • Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China.
,
Yue Feng
  • Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
,
Hui Feng
  • Shanghai Junshi Biosciences Co., Ltd, Shanghai, China.
,
Junyu Xiao
  • State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
,
Wenjie Tan
  • NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
,
Youchun Wang
  • Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China.
,
Chenhui Wang
  • Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
,
Jinghua Yan
  • CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  • University of Chinese Academy of Sciences, Beijing, China.

The successive emergences and accelerating spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and evolved resistance to some ongoing clinical therapeutics increase the risks associated with the coronavirus disease 2019 (COVID-19) pandemic. An urgent intervention for broadly effective therapies to limit the morbidity and mortality of COVID-19 and future transmission events from SARS-related coronaviruses (SARSr-CoVs) is needed. Here, we isolate and humanize an angiotensin-converting enzyme-2 (ACE2)-blocking monoclonal antibody (MAb), named h11B11, which exhibits potent inhibitory activity against SARS-CoV and circulating global SARS-CoV-2 lineages. When administered therapeutically or prophylactically in the hACE2 mouse model, h11B11 alleviates and prevents SARS-CoV-2 replication and virus-induced pathological syndromes. No significant changes in blood pressure and hematology chemistry toxicology were observed after injections of multiple high dosages of h11B11 in cynomolgus monkeys. Analysis of the structures of the h11B11/ACE2 and receptor-binding domain (RBD)/ACE2 complexes shows hindrance and epitope competition of the MAb and RBD for the receptor. Together, these results suggest h11B11 as a potential therapeutic countermeasure against SARS-CoV, SARS-CoV-2, and escape variants.

中文翻译: 一种针对 SARS-CoV-2 变体的广泛中和人源化 ACE2 靶向抗体

新型严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2) 谱系的连续出现和加速传播以及对某些正在进行的临床治疗的进化耐药性增加了与 2019 年冠状病毒病 (COVID-19) 大流行相关的风险。需要对广泛有效的疗法进行紧急干预,以限制 COVID-19 的发病率和死亡率以及未来 SARS 相关冠状病毒 (SARSr-CoV) 的传播事件。在这里,我们分离并人源化了一种名为 h11B11 的血管紧张素转化酶 2 (ACE2) 阻断单克隆抗体 (MAb),该抗体对 SARS-CoV 和循环全球 SARS-CoV-2 谱系具有有效的抑制活性。当在 hACE2 小鼠模型中进行治疗性或预防性给药时,h11B11 减轻和预防 SARS-CoV-2 复制和病毒引起的病理综合征。在食蟹猴中注射多次高剂量的 h11B11 后,未观察到血压和血液化学毒理学的显着变化。h11B11/ACE2 和受体结合域 (RBD)/ACE2 复合物的结构分析显示 MAb 和 RBD 对受体的阻碍和表位竞争。总之,这些结果表明 h11B11 是针对 SARS-CoV、SARS-CoV-2 和逃逸变体的潜在治疗对策。h11B11/ACE2 和受体结合域 (RBD)/ACE2 复合物的结构分析显示 MAb 和 RBD 对受体的阻碍和表位竞争。总之,这些结果表明 h11B11 是针对 SARS-CoV、SARS-CoV-2 和逃逸变体的潜在治疗对策。h11B11/ACE2 和受体结合域 (RBD)/ACE2 复合物的结构分析显示 MAb 和 RBD 对受体的阻碍和表位竞争。总之,这些结果表明 h11B11 是针对 SARS-CoV、SARS-CoV-2 和逃逸变体的潜在治疗对策。

更新日期:2021-08-17 点击分享 查看原文 点击收藏 取消收藏 新增笔记 阅读更多本刊新发论文 本刊介绍/投稿指南 相关文章 参考文献 引文 点击加载相关文章 全部期刊列表>> 阿拉丁锁定材料科学TOP学者科研动态第二届Wiley新锐科学家奖Chemistry Europe加速出版服务0811期刊文稿免费评分工具Call for papersCriticalInsights心理学SSCI期刊正在征稿中选择NDT出版您的肾脏病学、移植和透析领域文章第八届高分子科学前沿国际研讨会爱思唯尔主办第26届四面体研讨会上传手稿,智能选刊心脏病学SCI国际期刊医学期刊征稿开放获取内容中心上线肿瘤医学期刊商业管理营销金融神经科学期刊molecular中国科学院期刊分区2025生物学大类一区EMBO中国科学院期刊分区2025医学大类一区EMBO中国科学院期刊分区2025生物学大类-区加速出版服务0522科学润色服务0522药学临床医疗政策经济金融Q2好刊中国科学院期刊分区综合医学期刊生物医药期刊文章Top榜单教育领域多学科期刊加速出版服务新Springer旗下全新催化方向高质新刊系统生物学合成生物学专注于基础生命科学与临床研究的交叉领域传播分子、细胞和发育生物学领域的重大发现聚焦分子细胞和生物体生物学快速找到合适的投稿机会热点论文一站获取定位全球科研英才中国图象图形学学会合作刊南科大清华大学大连化物所中药国科大华中师范rice哈尔滨华南理工riceACS材料视界
  • 学术期刊
  • 行业资讯
  • 全球导师
  • X-MOL问答
  • 求职广场
  • 网址导航
  • 关于我们
  • 帮助中心
客服邮箱:[email protected] 官方微信:X-molTeam2 邮编:100098 地址:北京市海淀区知春路56号中航科技大厦 Copyright © 2014-2025 北京衮雪科技有限公司 All Rights Reserved 京ICP备11026495号-2 京公网安备 11010802027423号 down wechat bug bug

Từ khóa » H11b11