SGK Đại Số 10 - Bài 4. Bất Phương Trình Bậc Nhất Hai ẩn

Giải Bài Tập

Giải Bài Tập, Sách Giải, Giải Toán, Vật Lý, Hóa Học, Sinh Học, Ngữ Văn, Tiếng Anh, Lịch Sử, Địa Lý

  • Home
  • Lớp 1,2,3
    • Lớp 1
    • Giải Toán Lớp 1
    • Tiếng Việt Lớp 1
    • Lớp 2
    • Giải Toán Lớp 2
    • Tiếng Việt Lớp 2
    • Văn Mẫu Lớp 2
    • Lớp 3
    • Giải Toán Lớp 3
    • Tiếng Việt Lớp 3
    • Văn Mẫu Lớp 3
    • Giải Tiếng Anh Lớp 3
  • Lớp 4
    • Giải Toán Lớp 4
    • Tiếng Việt Lớp 4
    • Văn Mẫu Lớp 4
    • Giải Tiếng Anh Lớp 4
  • Lớp 5
    • Giải Toán Lớp 5
    • Tiếng Việt Lớp 5
    • Văn Mẫu Lớp 5
    • Giải Tiếng Anh Lớp 5
  • Lớp 6
    • Soạn Văn 6
    • Giải Toán Lớp 6
    • Giải Vật Lý 6
    • Giải Sinh Học 6
    • Giải Tiếng Anh Lớp 6
    • Giải Lịch Sử 6
    • Giải Địa Lý Lớp 6
    • Giải GDCD Lớp 6
  • Lớp 7
    • Soạn Văn 7
    • Giải Bài Tập Toán Lớp 7
    • Giải Vật Lý 7
    • Giải Sinh Học 7
    • Giải Tiếng Anh Lớp 7
    • Giải Lịch Sử 7
    • Giải Địa Lý Lớp 7
    • Giải GDCD Lớp 7
  • Lớp 8
    • Soạn Văn 8
    • Giải Bài Tập Toán 8
    • Giải Vật Lý 8
    • Giải Bài Tập Hóa 8
    • Giải Sinh Học 8
    • Giải Tiếng Anh Lớp 8
    • Giải Lịch Sử 8
    • Giải Địa Lý Lớp 8
  • Lớp 9
    • Soạn Văn 9
    • Giải Bài Tập Toán 9
    • Giải Vật Lý 9
    • Giải Bài Tập Hóa 9
    • Giải Sinh Học 9
    • Giải Tiếng Anh Lớp 9
    • Giải Lịch Sử 9
    • Giải Địa Lý Lớp 9
  • Lớp 10
    • Soạn Văn 10
    • Giải Bài Tập Toán 10
    • Giải Vật Lý 10
    • Giải Bài Tập Hóa 10
    • Giải Sinh Học 10
    • Giải Tiếng Anh Lớp 10
    • Giải Lịch Sử 10
    • Giải Địa Lý Lớp 10
  • Lớp 11
    • Soạn Văn 11
    • Giải Bài Tập Toán 11
    • Giải Vật Lý 11
    • Giải Bài Tập Hóa 11
    • Giải Sinh Học 11
    • Giải Tiếng Anh Lớp 11
    • Giải Lịch Sử 11
    • Giải Địa Lý Lớp 11
  • Lớp 12
    • Soạn Văn 12
    • Giải Bài Tập Toán 12
    • Giải Vật Lý 12
    • Giải Bài Tập Hóa 12
    • Giải Sinh Học 12
    • Giải Tiếng Anh Lớp 12
    • Giải Lịch Sử 12
    • Giải Địa Lý Lớp 12
Trang ChủLớp 10Giải Bài Tập Toán 10Sách Giáo Khoa - Đại Số 10Bài 4. Bất phương trình bậc nhất hai ẩn SGK Đại Số 10 - Bài 4. Bất phương trình bậc nhất hai ẩn
  • Bài 4. Bất phương trình bậc nhất hai ẩn trang 1
  • Bài 4. Bất phương trình bậc nhất hai ẩn trang 2
  • Bài 4. Bất phương trình bậc nhất hai ẩn trang 3
  • Bài 4. Bất phương trình bậc nhất hai ẩn trang 4
  • Bài 4. Bất phương trình bậc nhất hai ẩn trang 5
  • Bài 4. Bất phương trình bậc nhất hai ẩn trang 6
  • Bài 4. Bất phương trình bậc nhất hai ẩn trang 7
BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI Ẩn Tương tự, cặp số (x ; y) = (1 ; -2) là một nghiệm của bất phương trình thứ hai. Bất phương trình bậc nhất hai ẩn X, y có dạng tổng quát là ax + by<c (1) (ưx + by c ; ax + by > c) trong đó a, b, c là những số thực đã cho, a và b không đồng thời bằng 0,x và y là các ẩn số. II - BIỂU DIỄN TẬP NGHIỆM CỦA BAT phương trình bậc nhất HAI ẨN Cũng như bất phương trình bậc nhất một ẩn, các bất phương trình bậc nhất hai ẩn thường có vô số nghiệm và để mô tả tập nghiệm của chúng, ta sử dụng phương pháp biểu diễn hình học. Trong mặt phẳng toạ độ Oxy, tập hợp các điểm có toạ độ là nghiệm bất phương trình (1) được gọi là miền nghiệm của nó. Người ta đã chứng minh được rằng trong mặt phẳng toạ độ Oxy, đường thẳng ax + by = c chia mặt phẳng thành hai nửa mặt phẳng, một trong hai nửa mặt phẳng đó là miền nghiệm của bất phương trình ax + by c. Từ đó ta có quy tắc thực hành biểu diễn hình học tập nghiệm (hay biểu diễn miền nghiệm) của bất phương trình ax + by c) Bước 1. Trên mặt phẳng toạ độ Oxy, vẽ đường thẳng À : ax + by = c. Bước 2. Lấy một điểm Mg(x0;y0) -không thuộc A (ta thường lấy gốc toạ độ O) Bước 3. Tính axG + byữ và so sánh ơXq + byữ với c. Bước 4. Kết luận Nếừ ơXq + by0 < c thì nửa mặt phẳng bờ A chứa Mq là miền nghiệm của ax + by < c. Nếu ax0 + by0 > c thì nửa mặt phẳng bờ A không chứa Mq là miền nghiệm của ax + by < c. CHƯ Y Miền nghiệm của bất phương trình ax + by < c bỏ đi đường thẳng ax + by = c là miền nghiệm của bất phương trình ax + by < c. Ví dụ 1. Biểu diễn hình học tập nghiệm của bất phương trình bậc nhất hai ẩn 2x + y <3. Giải V Vẽ đường thẳng A : 2x + y = 3. \ Lấy gốc toạ độ ơ(0 ; 0), ta thấy 0 ỉ A và có 2.0 + 0 < 3 nên nửa mặt phẳng bờ A chứa gốc toạ độ 0 là miền nghiệm của.bất phương trình đã cho (miền không bị tô đậm trong hình 29). 3^ \ / ^Biểu diễn hình học tập nghiệm của bất phương trình bậc nhất hai ẩn 0 3 \ 2 \ X -3x + 2> > 0 . \ Hình 29 III - HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI Ẩn Tương tự hệ bất phương trình một ẩn Hệ bất phương trình bậc nhất hai ẩn gồm một số bất phương trình bậc nhất hai ẩn X, y mà ta phải tìm các nghiệm chung của chúng. Mỗi nghiệm chung đó được gọi là một nghiệm của hệ bất phương trình đã cho. Cũng như bất phương trình bậc nhất hai ẩn, ta có thê biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn. Ví dụ 2. Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn 3x + y < 6 A' + y < 4 X > 0 y > 0. Giải. Vẽ các đường thẳng (Ở!) : 3x + y = 6 (d2) : X + y = 4 (d3) : X = 0 (trục tung) (d4) : y - 0 (trục hoành). Vì điểm Mq(1 ; 1) có toạ độ thoả mãn tất cả các bất phương trình trong hệ trên nên ta tô đậm các nửa mặt phẳng bờ (í/p, (í/2), (ó/3), (<74) không chứa điểm Mq. Miền không bị tô đậm (hình tứ giác 0C1A kể cả bốn cạnh AI, IC, CO, OA) trong hình vẽ (h.30) là miền nghiệm của hệ đã cho. \Biểu diễn hình học tập nghiệm của'hệ bất phương trình bậc nhất hai ẩn 2x -y < 3 2x + 5y < 12x + 8. IV - ÁP DỤNG VÀO BÀI TOÁN KINH TẾ Giải một số bài toán kinh tế thường dẫn đến việc xét những hệ bất phương trình bậc nhất hai ẩn và giải chúng. Loại bài toán này được nghiên cứu trong một ngành toán học có tên gọi là Quy hoạch tuyến tính. Sau đây ta sẽ xét một bài toán đơn giản thuộc loại đó. Bài toán. Một phân xưởng có hai máy đặc chủng Mp Mọ sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy Mị trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy Mị trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai loại sản phẩm. Máy Mị làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ. Hãy đặt kế hoạch sản xuất sao cho tổng số tiền lãi cao nhất. Giải. Gọi X, y theo thứ tự là số tấn sản phẩm loại I, loại II sản xuất trong một ngày (x > 0, y > 0). Như vậy tiền lãi mỗi ngày là L = 2x + l,6y (triệu đồng) và số giờ làm việc (mỗi ngày) của máy Mị là 3x + y và máy M2 là X + y. 4-.ĐAI số 10-A - 97 Vì mỗi ngày máy Mỵ chỉ làm việc không quá 6 giờ, máy M2 không quá 4 giờ nên X, y phải thoả mãn hệ bất phương trình 3x + y < 6 > 0 >0. t x+y X . y Bài toán trở thành Trong các nghiệm của hệ bất phương trình (2), tìm nghiệm (x = A’o ; y - yò) sao cho L = 2x + 1,6y lớn nhất. Miền nghiệm của hệ bất phương trình (2) là tứ giác OAIC kể cả miền trong (gọi là miền tứ giác OAIC) xem ví dụ ở mục III hình 30. Người ta chứng minh được rằng biểu thức L = 2x + l,6y đạt được giá trị lớn nhất tại một trong các đỉnh của tứ giác OAIC (xem bài đọc thêm). Tính giá trị của biểu thức L = 2x + l,6y tại tất cả các đỉnh của tứ giác OAỈC, ta thấy L lớn nhất khi X = 1, y = 3. Vậy để có số tiền lãi cao nhất, mỗi ngày cần sản xuất 1 tấn sản phẩm loại I và 3 tấn sản phẩm loại II. ỌC THÊM PHƯƠNG PHÁP TÌM CỰC TRỊ CỦA BIỂU THỨC F = ax + by TRÊN MỘT MIẾN ĐA GIÁC Bài toán. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức F = ax + by (a, b là hai số đã cho không đồng thời bằng 0), trong đó X, y là các toạ độ của các điểm thuộc miền đa giác AjA2... A,AI+1... An. nhỏ nhất. Giải (h.31). Ta minh hoạ cách giải trong trường hợp n = 5 và chỉ xét trường hợp b > 0 (các trường hợp còn lại xét tương tự). Giả sử M{xq ; >>0) là một điểm đã cho thuộc miền đa giác. Qua điểm M và mỗi đỉnh của đa giác, kẻ các đường thẳng song song với đường thẳng ax + by = o. Trong các đường thẳng đó, đường thẳng qua điểm M có phương trình ax + by = ax0 + by0 , J - axl} + byrì} và căt trục tung tại điểm Ni 0 ; —u I. Vì b > 0 nên axữ + byữ lớn nhất khi và chỉ + byn . khi —9-7—9. lớn nhất. b Xác định X, y để F đạt giá trị lớn nhất, Hình 31 Trên hình 31, F = ax + by lớn nhất khi (x; y) là toạ độ eủa điểm Aj, bé nhất khi (x; y) là toạ độ điểm A4. Tóm lại, giá trị lớn nhất (nhỏ nhất) của biểu thức F = ax + by đạt được tại một trong các đỉnh của miền đa giác. Bài tập Biểu diễn hình học tập nghiệm của các bất phương trình bậc nhất hai ẩn sau. —X + 2 + 2ịy - 2) < 2(1 - x); b) 3(x - 1) + 4(y - 2) < 5x - 3. Biểu diễn hình học tập nghiệm của các hệ bất phương trình bậc nhất hai ẩn sau. a) X - 2y -2 y, - X < 3 ; b) Ĩ + Ỉ-KO 3 2 x+i-^2 2 2 X > 0. Có ba nhóm máy A, B, c dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau Nhóm Số máy trong mỗi nhóm Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm Loại I Loại II A 10 2 2 B 4 0 2 c 12 2 4 Một đơn vị sản phẩm I lãi 3 nghìn đồng, một đơn vị sản phẩm n lãi 5 nghìn đồng. Hãy lập phương án để việc sản xuất hai loại sản phẩm trên có lãi cao nhất. Hướng dẫn : Áp dụng phương pháp giải trong mục IV.

Các bài học tiếp theo

  • Bài 5. Dấu của tam thức bậc hai
  • Ôn tập chương IV
  • Bài 1. Bảng phân bố tần số và tần suất
  • Bài 2. Biểu đồ
  • Bài 3. Số trung bình cộng, số trung vị, mốt
  • Bài 4. Phương sai và độ lệch chuẩn
  • Ôn tập chương V
  • Bài 1. Cung và góc lượng giác
  • Bài 2. Giá trị lượng giác của một cung
  • Bài 3. Công thức lượng giác

Các bài học trước

  • Bài 3. Dấu của nhị thức bậc nhất
  • Bài 2. Bất phương trình và hệ bất phương trình một ẩn
  • Bài 1. Bất đẳng thức
  • Ôn tập chương III
  • Bài 3. Phương trình và hệ phương trình bậc nhất nhiều ẩn
  • Bài 2. Phương trình quy về phương trình bậc nhất, bậc hai
  • Bài 1. Đại cương về phương trình
  • Ôn tập chương II
  • Bài 3. Hàm số bậc hai
  • Bài 2. Hàm số y = ax + b

Tham Khảo Thêm

  • Giải Bài Tập Toán 10 Đại Số
  • Giải Bài Tập Toán 10 Hình Học
  • Giải Toán 10 Đại Số
  • Giải Toán 10 Hình Học
  • Giải Bài Tập Hình Học 10
  • Sách Giáo Khoa - Đại Số 10(Đang xem)
  • Sách Giáo Khoa - Hình Học 10

Sách Giáo Khoa - Đại Số 10

  • Chương I. MỆNH ĐỀ, TẬP HỢP
  • Bài 1. Mệnh đề
  • Bài 2. Tập hợp
  • Bài 3. Các phép toán tập hợp
  • Bài 4. Các tập hợp số
  • Bài 5. Số gần đúng, sai số
  • Ôn tập chương I
  • Chương II. HÀM SỐ BẬC NHẤT VÀ BẬC HAI
  • Bài 1. Hàm số
  • Bài 2. Hàm số y = ax + b
  • Bài 3. Hàm số bậc hai
  • Ôn tập chương II
  • Chương III. PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH
  • Bài 1. Đại cương về phương trình
  • Bài 2. Phương trình quy về phương trình bậc nhất, bậc hai
  • Bài 3. Phương trình và hệ phương trình bậc nhất nhiều ẩn
  • Ôn tập chương III
  • Chương IV. BẤT ĐẲNG THỨC - BẤT PHƯƠNG TRÌNH
  • Bài 1. Bất đẳng thức
  • Bài 2. Bất phương trình và hệ bất phương trình một ẩn
  • Bài 3. Dấu của nhị thức bậc nhất
  • Bài 4. Bất phương trình bậc nhất hai ẩn(Đang xem)
  • Bài 5. Dấu của tam thức bậc hai
  • Ôn tập chương IV
  • Chương V. THỐNG KÊ
  • Bài 1. Bảng phân bố tần số và tần suất
  • Bài 2. Biểu đồ
  • Bài 3. Số trung bình cộng, số trung vị, mốt
  • Bài 4. Phương sai và độ lệch chuẩn
  • Ôn tập chương V
  • Chương VI. CUNG VÀ GÓC LƯỢNG GIÁC - CÔNG THỨC LƯỢNG GIÁC
  • Bài 1. Cung và góc lượng giác
  • Bài 2. Giá trị lượng giác của một cung
  • Bài 3. Công thức lượng giác
  • Ôn tập chương VI
  • Ôn tập cuối năm

Từ khóa » Hệ Bất Phương Trình Bậc Nhất Hai ẩn