composition.NMF — Scikit-learn 1.1.1 Documentation
- Install
- User Guide
- API
- Examples
- Community
- Getting Started
- Release History
- Glossary
- Development
- FAQ
- Support
- Related Projects
- Roadmap
- Governance
- About us
- GitHub
Section Navigation
- sklearn
- config_context
- get_config
- set_config
- show_versions
- sklearn.base
- BaseEstimator
- BiclusterMixin
- ClassNamePrefixFeaturesOutMixin
- ClassifierMixin
- ClusterMixin
- DensityMixin
- MetaEstimatorMixin
- OneToOneFeatureMixin
- OutlierMixin
- RegressorMixin
- TransformerMixin
- clone
- is_classifier
- is_clusterer
- is_regressor
- is_outlier_detector
- sklearn.calibration
- CalibratedClassifierCV
- calibration_curve
- CalibrationDisplay
- sklearn.cluster
- AffinityPropagation
- AgglomerativeClustering
- Birch
- BisectingKMeans
- DBSCAN
- FeatureAgglomeration
- HDBSCAN
- KMeans
- MeanShift
- MiniBatchKMeans
- OPTICS
- SpectralBiclustering
- SpectralClustering
- SpectralCoclustering
- affinity_propagation
- cluster_optics_dbscan
- cluster_optics_xi
- compute_optics_graph
- dbscan
- estimate_bandwidth
- k_means
- kmeans_plusplus
- mean_shift
- spectral_clustering
- ward_tree
- sklearn.compose
- ColumnTransformer
- TransformedTargetRegressor
- make_column_selector
- make_column_transformer
- sklearn.covariance
- EllipticEnvelope
- EmpiricalCovariance
- GraphicalLasso
- GraphicalLassoCV
- LedoitWolf
- MinCovDet
- OAS
- ShrunkCovariance
- empirical_covariance
- graphical_lasso
- ledoit_wolf
- ledoit_wolf_shrinkage
- oas
- shrunk_covariance
- sklearn.cross_decomposition
- CCA
- PLSCanonical
- PLSRegression
- PLSSVD
- sklearn.datasets
- clear_data_home
- dump_svmlight_file
- fetch_20newsgroups
- fetch_20newsgroups_vectorized
- fetch_california_housing
- fetch_covtype
- fetch_file
- fetch_kddcup99
- fetch_lfw_pairs
- fetch_lfw_people
- fetch_olivetti_faces
- fetch_openml
- fetch_rcv1
- fetch_species_distributions
- get_data_home
- load_breast_cancer
- load_diabetes
- load_digits
- load_files
- load_iris
- load_linnerud
- load_sample_image
- load_sample_images
- load_svmlight_file
- load_svmlight_files
- load_wine
- make_biclusters
- make_blobs
- make_checkerboard
- make_circles
- make_classification
- make_friedman1
- make_friedman2
- make_friedman3
- make_gaussian_quantiles
- make_hastie_10_2
- make_low_rank_matrix
- make_moons
- make_multilabel_classification
- make_regression
- make_s_curve
- make_sparse_coded_signal
- make_sparse_spd_matrix
- make_sparse_uncorrelated
- make_spd_matrix
- make_swiss_roll
- sklearn.decomposition
- DictionaryLearning
- FactorAnalysis
- FastICA
- IncrementalPCA
- KernelPCA
- LatentDirichletAllocation
- MiniBatchDictionaryLearning
- MiniBatchNMF
- MiniBatchSparsePCA
- NMF
- PCA
- SparseCoder
- SparsePCA
- TruncatedSVD
- dict_learning
- dict_learning_online
- fastica
- non_negative_factorization
- sparse_encode
- sklearn.discriminant_analysis
- LinearDiscriminantAnalysis
- QuadraticDiscriminantAnalysis
- sklearn.dummy
- DummyClassifier
- DummyRegressor
- sklearn.ensemble
- AdaBoostClassifier
- AdaBoostRegressor
- BaggingClassifier
- BaggingRegressor
- ExtraTreesClassifier
- ExtraTreesRegressor
- GradientBoostingClassifier
- GradientBoostingRegressor
- HistGradientBoostingClassifier
- HistGradientBoostingRegressor
- IsolationForest
- RandomForestClassifier
- RandomForestRegressor
- RandomTreesEmbedding
- StackingClassifier
- StackingRegressor
- VotingClassifier
- VotingRegressor
- sklearn.exceptions
- ConvergenceWarning
- DataConversionWarning
- DataDimensionalityWarning
- EfficiencyWarning
- FitFailedWarning
- InconsistentVersionWarning
- NotFittedError
- UndefinedMetricWarning
- EstimatorCheckFailedWarning
- sklearn.experimental
- enable_halving_search_cv
- enable_iterative_imputer
- sklearn.feature_extraction
- DictVectorizer
- FeatureHasher
- PatchExtractor
- extract_patches_2d
- grid_to_graph
- img_to_graph
- reconstruct_from_patches_2d
- CountVectorizer
- HashingVectorizer
- TfidfTransformer
- TfidfVectorizer
- sklearn.feature_selection
- GenericUnivariateSelect
- RFE
- RFECV
- SelectFdr
- SelectFpr
- SelectFromModel
- SelectFwe
- SelectKBest
- SelectPercentile
- SelectorMixin
- SequentialFeatureSelector
- VarianceThreshold
- chi2
- f_classif
- f_regression
- mutual_info_classif
- mutual_info_regression
- r_regression
- sklearn.frozen
- FrozenEstimator
- sklearn.gaussian_process
- GaussianProcessClassifier
- GaussianProcessRegressor
- CompoundKernel
- ConstantKernel
- DotProduct
- ExpSineSquared
- Exponentiation
- Hyperparameter
- Kernel
- Matern
- PairwiseKernel
- Product
- RBF
- RationalQuadratic
- Sum
- WhiteKernel
- sklearn.impute
- IterativeImputer
- KNNImputer
- MissingIndicator
- SimpleImputer
- sklearn.inspection
- partial_dependence
- permutation_importance
- DecisionBoundaryDisplay
- PartialDependenceDisplay
- sklearn.isotonic
- IsotonicRegression
- check_increasing
- isotonic_regression
- sklearn.kernel_approximation
- AdditiveChi2Sampler
- Nystroem
- PolynomialCountSketch
- RBFSampler
- SkewedChi2Sampler
- sklearn.kernel_ridge
- KernelRidge
- sklearn.linear_model
- LogisticRegression
- LogisticRegressionCV
- PassiveAggressiveClassifier
- Perceptron
- RidgeClassifier
- RidgeClassifierCV
- SGDClassifier
- SGDOneClassSVM
- LinearRegression
- Ridge
- RidgeCV
- SGDRegressor
- ElasticNet
- ElasticNetCV
- Lars
- LarsCV
- Lasso
- LassoCV
- LassoLars
- LassoLarsCV
- LassoLarsIC
- OrthogonalMatchingPursuit
- OrthogonalMatchingPursuitCV
- ARDRegression
- BayesianRidge
- MultiTaskElasticNet
- MultiTaskElasticNetCV
- MultiTaskLasso
- MultiTaskLassoCV
- HuberRegressor
- QuantileRegressor
- RANSACRegressor
- TheilSenRegressor
- GammaRegressor
- PoissonRegressor
- TweedieRegressor
- PassiveAggressiveRegressor
- enet_path
- lars_path
- lars_path_gram
- lasso_path
- orthogonal_mp
- orthogonal_mp_gram
- ridge_regression
- sklearn.manifold
- ClassicalMDS
- Isomap
- LocallyLinearEmbedding
- MDS
- SpectralEmbedding
- TSNE
- locally_linear_embedding
- smacof
- spectral_embedding
- trustworthiness
- sklearn.metrics
- check_scoring
- get_scorer
- get_scorer_names
- make_scorer
- accuracy_score
- auc
- average_precision_score
- balanced_accuracy_score
- brier_score_loss
- class_likelihood_ratios
- classification_report
- cohen_kappa_score
- confusion_matrix
- confusion_matrix_at_thresholds
- d2_brier_score
- d2_log_loss_score
- dcg_score
- det_curve
- f1_score
- fbeta_score
- hamming_loss
- hinge_loss
- jaccard_score
- log_loss
- matthews_corrcoef
- multilabel_confusion_matrix
- ndcg_score
- precision_recall_curve
- precision_recall_fscore_support
- precision_score
- recall_score
- roc_auc_score
- roc_curve
- top_k_accuracy_score
- zero_one_loss
- d2_absolute_error_score
- d2_pinball_score
- d2_tweedie_score
- explained_variance_score
- max_error
- mean_absolute_error
- mean_absolute_percentage_error
- mean_gamma_deviance
- mean_pinball_loss
- mean_poisson_deviance
- mean_squared_error
- mean_squared_log_error
- mean_tweedie_deviance
- median_absolute_error
- r2_score
- root_mean_squared_error
- root_mean_squared_log_error
- coverage_error
- label_ranking_average_precision_score
- label_ranking_loss
- adjusted_mutual_info_score
- adjusted_rand_score
- calinski_harabasz_score
- contingency_matrix
- pair_confusion_matrix
- completeness_score
- davies_bouldin_score
- fowlkes_mallows_score
- homogeneity_completeness_v_measure
- homogeneity_score
- mutual_info_score
- normalized_mutual_info_score
- rand_score
- silhouette_samples
- silhouette_score
- v_measure_score
- consensus_score
- DistanceMetric
- additive_chi2_kernel
- chi2_kernel
- cosine_distances
- cosine_similarity
- distance_metrics
- euclidean_distances
- haversine_distances
- kernel_metrics
- laplacian_kernel
- linear_kernel
- manhattan_distances
- nan_euclidean_distances
- paired_cosine_distances
- paired_distances
- paired_euclidean_distances
- paired_manhattan_distances
- pairwise_kernels
- polynomial_kernel
- rbf_kernel
- sigmoid_kernel
- pairwise_distances
- pairwise_distances_argmin
- pairwise_distances_argmin_min
- pairwise_distances_chunked
- ConfusionMatrixDisplay
- DetCurveDisplay
- PrecisionRecallDisplay
- PredictionErrorDisplay
- RocCurveDisplay
- sklearn.mixture
- BayesianGaussianMixture
- GaussianMixture
- sklearn.model_selection
- GroupKFold
- GroupShuffleSplit
- KFold
- LeaveOneGroupOut
- LeaveOneOut
- LeavePGroupsOut
- LeavePOut
- PredefinedSplit
- RepeatedKFold
- RepeatedStratifiedKFold
- ShuffleSplit
- StratifiedGroupKFold
- StratifiedKFold
- StratifiedShuffleSplit
- TimeSeriesSplit
- check_cv
- train_test_split
- GridSearchCV
- HalvingGridSearchCV
- HalvingRandomSearchCV
- ParameterGrid
- ParameterSampler
- RandomizedSearchCV
- FixedThresholdClassifier
- TunedThresholdClassifierCV
- cross_val_predict
- cross_val_score
- cross_validate
- learning_curve
- permutation_test_score
- validation_curve
- LearningCurveDisplay
- ValidationCurveDisplay
- sklearn.multiclass
- OneVsOneClassifier
- OneVsRestClassifier
- OutputCodeClassifier
- sklearn.multioutput
- ClassifierChain
- MultiOutputClassifier
- MultiOutputRegressor
- RegressorChain
- sklearn.naive_bayes
- BernoulliNB
- CategoricalNB
- ComplementNB
- GaussianNB
- MultinomialNB
- sklearn.neighbors
- BallTree
- KDTree
- KNeighborsClassifier
- KNeighborsRegressor
- KNeighborsTransformer
- KernelDensity
- LocalOutlierFactor
- NearestCentroid
- NearestNeighbors
- NeighborhoodComponentsAnalysis
- RadiusNeighborsClassifier
- RadiusNeighborsRegressor
- RadiusNeighborsTransformer
- kneighbors_graph
- radius_neighbors_graph
- sort_graph_by_row_values
- sklearn.neural_network
- BernoulliRBM
- MLPClassifier
- MLPRegressor
- sklearn.pipeline
- FeatureUnion
- Pipeline
- make_pipeline
- make_union
- sklearn.preprocessing
- Binarizer
- FunctionTransformer
- KBinsDiscretizer
- KernelCenterer
- LabelBinarizer
- LabelEncoder
- MaxAbsScaler
- MinMaxScaler
- MultiLabelBinarizer
- Normalizer
- OneHotEncoder
- OrdinalEncoder
- PolynomialFeatures
- PowerTransformer
- QuantileTransformer
- RobustScaler
- SplineTransformer
- StandardScaler
- TargetEncoder
- add_dummy_feature
- binarize
- label_binarize
- maxabs_scale
- minmax_scale
- normalize
- power_transform
- quantile_transform
- robust_scale
- scale
- sklearn.random_projection
- GaussianRandomProjection
- SparseRandomProjection
- johnson_lindenstrauss_min_dim
- sklearn.semi_supervised
- LabelPropagation
- LabelSpreading
- SelfTrainingClassifier
- sklearn.svm
- LinearSVC
- LinearSVR
- NuSVC
- NuSVR
- OneClassSVM
- SVC
- SVR
- l1_min_c
- sklearn.tree
- DecisionTreeClassifier
- DecisionTreeRegressor
- ExtraTreeClassifier
- ExtraTreeRegressor
- export_graphviz
- export_text
- plot_tree
- sklearn.utils
- Bunch
- _safe_indexing
- as_float_array
- assert_all_finite
- deprecated
- estimator_html_repr
- gen_batches
- gen_even_slices
- indexable
- murmurhash3_32
- resample
- safe_mask
- safe_sqr
- shuffle
- Tags
- InputTags
- TargetTags
- ClassifierTags
- RegressorTags
- TransformerTags
- get_tags
- check_X_y
- check_array
- check_consistent_length
- check_random_state
- check_scalar
- check_is_fitted
- check_memory
- check_symmetric
- column_or_1d
- has_fit_parameter
- validate_data
- available_if
- compute_class_weight
- compute_sample_weight
- is_multilabel
- type_of_target
- unique_labels
- density
- fast_logdet
- randomized_range_finder
- randomized_svd
- safe_sparse_dot
- weighted_mode
- incr_mean_variance_axis
- inplace_column_scale
- inplace_csr_column_scale
- inplace_row_scale
- inplace_swap_column
- inplace_swap_row
- mean_variance_axis
- inplace_csr_row_normalize_l1
- inplace_csr_row_normalize_l2
- single_source_shortest_path_length
- sample_without_replacement
- min_pos
- MetadataRequest
- MetadataRouter
- MethodMapping
- get_routing_for_object
- process_routing
- all_displays
- all_estimators
- all_functions
- check_estimator
- parametrize_with_checks
- estimator_checks_generator
- Parallel
- delayed
- API Reference
- sklearn.decomposition
- NMF
Non-Negative Matrix Factorization (NMF).
Find two non-negative matrices, i.e. matrices with all non-negative elements, (W, H) whose product approximates the non-negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction.
The objective function is:
\[ \begin{align}\begin{aligned}L(W, H) &= 0.5 * ||X - WH||_{loss}^2\\ &+ alpha\_W * l1\_ratio * n\_features * ||vec(W)||_1\\ &+ alpha\_H * l1\_ratio * n\_samples * ||vec(H)||_1\\ &+ 0.5 * alpha\_W * (1 - l1\_ratio) * n\_features * ||W||_{Fro}^2\\ &+ 0.5 * alpha\_H * (1 - l1\_ratio) * n\_samples * ||H||_{Fro}^2,\end{aligned}\end{align} \]where \(||A||_{Fro}^2 = \sum_{i,j} A_{ij}^2\) (Frobenius norm) and \(||vec(A)||_1 = \sum_{i,j} abs(A_{ij})\) (Elementwise L1 norm).
The generic norm \(||X - WH||_{loss}\) may represent the Frobenius norm or another supported beta-divergence loss. The choice between options is controlled by the beta_loss parameter.
The regularization terms are scaled by n_features for W and by n_samples for H to keep their impact balanced with respect to one another and to the data fit term as independent as possible of the size n_samples of the training set.
The objective function is minimized with an alternating minimization of W and H.
Note that the transformed data is named W and the components matrix is named H. In the NMF literature, the naming convention is usually the opposite since the data matrix X is transposed.
Read more in the User Guide.
Parameters: n_componentsint or {‘auto’} or None, default=’auto’Number of components. If None, all features are kept. If n_components='auto', the number of components is automatically inferred from W or H shapes.
Changed in version 1.4: Added 'auto' value.
Changed in version 1.6: Default value changed from None to 'auto'.
init{‘random’, ‘nndsvd’, ‘nndsvda’, ‘nndsvdar’, ‘custom’}, default=NoneMethod used to initialize the procedure. Valid options:
None: ‘nndsvda’ if n_components <= min(n_samples, n_features), otherwise random.
'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components)
'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness)
'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired)
'nndsvdar' NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired)
'custom': Use custom matrices W and H which must both be provided.
Changed in version 1.1: When init=None and n_components is less than n_samples and n_features defaults to nndsvda instead of nndsvd.
solver{‘cd’, ‘mu’}, default=’cd’Numerical solver to use:
‘cd’ is a Coordinate Descent solver.
‘mu’ is a Multiplicative Update solver.
Added in version 0.17: Coordinate Descent solver.
Added in version 0.19: Multiplicative Update solver.
beta_lossfloat or {‘frobenius’, ‘kullback-leibler’, ‘itakura-saito’}, default=’frobenius’Beta divergence to be minimized, measuring the distance between X and the dot product WH. Note that values different from ‘frobenius’ (or 2) and ‘kullback-leibler’ (or 1) lead to significantly slower fits. Note that for beta_loss <= 0 (or ‘itakura-saito’), the input matrix X cannot contain zeros. Used only in ‘mu’ solver.
Added in version 0.19.
tolfloat, default=1e-4Tolerance of the stopping condition.
max_iterint, default=200Maximum number of iterations before timing out.
random_stateint, RandomState instance or None, default=NoneUsed for initialisation (when init == ‘nndsvdar’ or ‘random’), and in Coordinate Descent. Pass an int for reproducible results across multiple function calls. See Glossary.
alpha_Wfloat, default=0.0Constant that multiplies the regularization terms of W. Set it to zero (default) to have no regularization on W.
Added in version 1.0.
alpha_Hfloat or “same”, default=”same”Constant that multiplies the regularization terms of H. Set it to zero to have no regularization on H. If “same” (default), it takes the same value as alpha_W.
Added in version 1.0.
l1_ratiofloat, default=0.0The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
Added in version 0.17: Regularization parameter l1_ratio used in the Coordinate Descent solver.
verboseint, default=0Whether to be verbose.
shufflebool, default=FalseIf true, randomize the order of coordinates in the CD solver.
Added in version 0.17: shuffle parameter used in the Coordinate Descent solver.
Attributes: components_ndarray of shape (n_components, n_features)Factorization matrix, sometimes called ‘dictionary’.
n_components_intThe number of components. It is same as the n_components parameter if it was given. Otherwise, it will be same as the number of features.
reconstruction_err_floatFrobenius norm of the matrix difference, or beta-divergence, between the training data X and the reconstructed data WH from the fitted model.
n_iter_intActual number of iterations.
n_features_in_intNumber of features seen during fit.
Added in version 0.24.
feature_names_in_ndarray of shape (n_features_in_,)Names of features seen during fit. Defined only when X has feature names that are all strings.
Added in version 1.0.
See also
DictionaryLearningFind a dictionary that sparsely encodes data.
MiniBatchSparsePCAMini-batch Sparse Principal Components Analysis.
PCAPrincipal component analysis.
SparseCoderFind a sparse representation of data from a fixed, precomputed dictionary.
SparsePCASparse Principal Components Analysis.
TruncatedSVDDimensionality reduction using truncated SVD.
References
[1]“Fast local algorithms for large scale nonnegative matrix and tensor factorizations” Cichocki, Andrzej, and P. H. A. N. Anh-Huy. IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009.
[2]“Algorithms for nonnegative matrix factorization with the beta-divergence” Fevotte, C., & Idier, J. (2011). Neural Computation, 23(9).
Examples
>>> importnumpyasnp >>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> fromsklearn.decompositionimport NMF >>> model = NMF(n_components=2, init='random', random_state=0) >>> W = model.fit_transform(X) >>> H = model.components_ fit(X, y=None, **params)[source]#Learn a NMF model for the data X.
Parameters: X{array-like, sparse matrix} of shape (n_samples, n_features)Training vector, where n_samples is the number of samples and n_features is the number of features.
yIgnoredNot used, present for API consistency by convention.
**paramskwargsParameters (keyword arguments) and values passed to the fit_transform instance.
Returns: selfobjectReturns the instance itself.
fit_transform(X, y=None, W=None, H=None)[source]#Learn a NMF model for the data X and returns the transformed data.
This is more efficient than calling fit followed by transform.
Parameters: X{array-like, sparse matrix} of shape (n_samples, n_features)Training vector, where n_samples is the number of samples and n_features is the number of features.
yIgnoredNot used, present for API consistency by convention.
Warray-like of shape (n_samples, n_components), default=NoneIf init='custom', it is used as initial guess for the solution. If None, uses the initialisation method specified in init.
Harray-like of shape (n_components, n_features), default=NoneIf init='custom', it is used as initial guess for the solution. If None, uses the initialisation method specified in init.
Returns: Wndarray of shape (n_samples, n_components)Transformed data.
get_feature_names_out(input_features=None)[source]#Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: ["class_name0", "class_name1", "class_name2"].
Parameters: input_featuresarray-like of str or None, default=NoneOnly used to validate feature names with the names seen in fit.
Returns: feature_names_outndarray of str objectsTransformed feature names.
get_metadata_routing()[source]#Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Returns: routingMetadataRequestA MetadataRequest encapsulating routing information.
get_params(deep=True)[source]#Get parameters for this estimator.
Parameters: deepbool, default=TrueIf True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: paramsdictParameter names mapped to their values.
inverse_transform(X)[source]#Transform data back to its original space.
Added in version 0.18.
Parameters: X{ndarray, sparse matrix} of shape (n_samples, n_components)Transformed data matrix.
Returns: X_originalndarray of shape (n_samples, n_features)Returns a data matrix of the original shape.
set_output(*, transform=None)[source]#Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters: transform{“default”, “pandas”, “polars”}, default=NoneConfigure output of transform and fit_transform.
"default": Default output format of a transformer
"pandas": DataFrame output
"polars": Polars output
None: Transform configuration is unchanged
Added in version 1.4: "polars" option was added.
Returns: selfestimator instanceEstimator instance.
set_params(**params)[source]#Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Parameters: **paramsdictEstimator parameters.
Returns: selfestimator instanceEstimator instance.
transform(X)[source]#Transform the data X according to the fitted NMF model.
Parameters: X{array-like, sparse matrix} of shape (n_samples, n_features)Training vector, where n_samples is the number of samples and n_features is the number of features.
Returns: Wndarray of shape (n_samples, n_components)Transformed data.
Gallery examples#
Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation
Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet AllocationSelecting dimensionality reduction with Pipeline and GridSearchCV
Selecting dimensionality reduction with Pipeline and GridSearchCVFaces dataset decompositions
Faces dataset decompositions On this page- NMF
- fit
- fit_transform
- get_feature_names_out
- get_metadata_routing
- get_params
- inverse_transform
- set_output
- set_params
- transform
- Gallery examples
This Page
- Show Source
Từ khóa » H No
-
Da$H - "No Shorts" (prod. V Don & Kill) [OFFICIAL AUDIO] - YouTube
-
I Am A Cat, This Game Was Made For Me 😻🔴 LIVE NOW /WGjpXR3yl9o 2 Ngày Trước
-
Do Not Eat The Nail Polish⚠️✋💅🎂 2 Ngày Trước
-
Phone Backgrounds But Make It ✨fancy✨😌 /pages/ba… 4 Ngày Trước
-
Kind Of Wild To Think That Yesterday 10,000 People At Once Were Watching Me Launch A Nail Polish Collection🥲 Thank You For Showing Up And For Being Interested In What I’m Interested In💅💕 5 Ngày Trước
-
Junior H - No Cap [Official Video] - YouTube
-
Da$H - "NO TIME" [OFFICIAL AUDIO] - YouTube
-
MADDIECA$H - NO HOOK (Prod. By Bankroll BaBy) OFFICIAL MV
-
Da$H - "NO MAN'S LAND" [OFFICIAL SHORT] - YouTube
-
Kevin Na$h - No Time - YouTube
-
H$ - NO WISDOM - YouTube
-
“.h: No Such File Or Directory" - 2 Easy Fixes To Arduino Error - SOLVED
-
Fatal Error: Python.h: No Such File Or Directory - Stack Overflow
-
Fd_forward.h: No Such File Or Directory - Libraries - Arduino Forum
-
H-2B Temporary Non-Agricultural Workers - USCIS
-
Arduino - How To Fix Error .h: No Such File Or Directory