Số đường Tiệm Cận Của đồ Thị Hàm Số \(y=\frac{3}{x-2}\) Bằng
Có thể bạn quan tâm
- Câu hỏi:
Số đường tiệm cận của đồ thị hàm số \(y=\frac{3}{x-2}\) bằng
- A. 0
- B. 1
- C. 3
- D. 2
Lời giải tham khảo:
Đáp án đúng: D
Ta có: \(\underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{3}{x-2}=0.\) Suy ra đồ thị hàm số có một tiệm cận ngang là \(y=0.\)
\(\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,y=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\frac{3}{x-2}=+\infty .\) Suy ra đồ thị hàm số có một tiệm cận đứng là \(x=2.\)
Vậy đồ thị hàm số có hai đường tiệm cận.
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 280806
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Hàn Thuyên lần 3
50 câu hỏi | 90 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số \(y={{x}^{3}}-6{{x}^{2}}+7x+5\) có đồ thị là \(\left( C \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 là:
- Giá trị của giới hạn \(\underset{x\to -1}{\mathop{\lim }}\,\frac{{{x}^{3}}+2{{x}^{2}}+1}{{{x}^{2}}+1}\) là
- Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên Tìm \(m\) để phương trình \(2f(x)+m=0\) có đúng \(3\) nghiệm phân biệt
- Tìm số mặt của hình đa diện ở hình vẽ bên
- Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
- Cho hàm số\(y=\frac{ax+b}{cx+d}\)có đồ thị như hình vẽ dưới đây. Khẳng định nào sau đây đúng?
- Số giao điểm của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-9x-2\) với trục hoành là:
- Cho tứ diện \(OABC\) có \(OA\), \(OB\), \(OC\) đôi một vuông góc nhau và \(OA=OB\)\(=OC=3a\). Tính khoảng cách giữa hai đường thẳng \(AC\) và \(OB\).
- Cho hàm số \(y=f(x)\) có bảng biến thiên như sau Hàm số đã cho đồng biến trên khoảng nào dưới đây
- Hàm số nào sau đây không có cực trị
- Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ sau
- Số đường tiệm cận của đồ thị hàm số \(y=\frac{3}{x-2}\) bằng
- Một hình chóp có đáy là tam giác đều cạnh bằng \(2\) và có chiều cao bằng \(4.\) Tính thể tích khối chóp đó.
- Cho hàm số \(y=f(x)\) có đồ thị hàm \(f'(x)\) như hình vẽ Số điểm cực trị của hàm số đã cho là
- Giá trị lớn nhất của hàm số \(f(x)=2{{x}^{4}}-3{{x}^{2}}+1\) trên đoạn \(\left[ 0;3 \right]\) bằng:
- Số cách chia 15 học sinh thành 3 nhóm A, B, C lần lượt gồm 4, 5, 6 học sinh là:
- Cho hàm số \(y=f(x)\) có bảng biến thiên như sau Hàm số đã cho đạt cực đại tại
- Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA\bot \left( ABCD \right)\), \(SB=a\sqrt{3}\). Tính thể tích \(V\) của khối chóp \(S.ABCD\) theo \(a\).
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)=2x-\frac{2}{{{x}^{2}}},\,\forall x\ne 0\) . Giá trị nhỏ nhất của hàm số trên \(\left( 0;+\infty \right)\) là
- Cho hình chóp \(S.\,ABCD\) có đáy là hình vuông cạnh \(a\), mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp \(S.\,ABCD\) là
- Cho hàm số \(f(x)=-\frac{1}{3}{{x}^{3}}+m{{x}^{2}}+\left( 3m+2 \right)x-5\) . Tập hợp các giá trị của tham số \(m\) để hàm số nghịch biến trên \(\mathbb{R}\) là \(\left[ a;\,b \right]\). Khi đó \(2a-b\) bằng
- Tính tổng tất cả các nghiệm của phươg trình sau \({{3}^{2x+8}}-{{4.3}^{x+5}}+27=0\).
- Hs \(y=\left| {{\left( x-1 \right)}^{3}}\left( x+1 \right) \right|\) có bao nhiêu điểm cực trị?
- Cho hình chóp \(S.ABC\)có \(SA\) vuông góc với mặt phẳng \(\left( ABC \right),SA=a,AB=a\),\(AC=2a,\) \(\widehat{BAC}={{60}^{0}}.\) Tính diện tích hình cầu ngoại tiếp hình chóp \(S.ABC\).
- Đặt \({{\log }_{2}}5=a\), \({{\log }_{3}}2=b\). Tính \({{\log }_{15}}20\) theo \(a\) và \(b\) ta được
- Cho hình chóp \(S.ABC\) có \(\Delta ABC\) vuông tại \(B\), \(BA=a\), \(BC=a\sqrt{3}\). Cạnh bên \(SA\) vuông góc với đáy và \(SA=a\). Tính bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\).
- Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(\frac{a\sqrt{5}}{2}\). Số đo góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( ABCD \right)\) là:
- Tính thể tích \(V\) của khối lăng trụ tứ giác đều \(ABCD.{A}'{B}'{C}'{D}'\) biết độ dài cạnh đáy của lăng trụ bằng \(2\) đồng thời góc tạo bởi \({A}'C\) và đáy \(\left( ABCD \right)\) bằng \(30{}^\circ \).
- Cho hình chóp \(S.ABCD\), đáy là hình chữ nhật tâm \(O\), \(AB=a\), \(AD=a\sqrt{3}\), \(SA=3a\), \(SO\) vuông góc với mặt đáy \(\left( ABCD \right)\). Thể tích khối chóp \(S.ABC\) bằng
- Hình vẽ bên dưới là đồ thị của hàm số nào?
- Cho \(a>1\). Mệnh đề nào sau đây là đúng?
- Tỷ lệ tăng dân số hàng năm của Việt Nam là 1,07%. Năm 2016, dân số của Việt Nam là 93.422.000 người. Hỏi với tỷ lệ tăng dân số như vậy thì năm 2026 dân số Việt Nam gần với kết quả nào nhất?
- Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\), góc giữa \(A'D\) và \(CD'\)bằng:
- Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy là tam giác vuông cân tại \(A\), \(AB=AC=a\), \(A{A}'=\sqrt{2}a\). Thể tích khối cầu ngoại tiếp hình tứ diện \(A{B}'{A}'C\) là
- Cho hình chóp \(S.ABCD\) có \(SA\bot \left( ABCD \right)\), đáy \(ABCD\) là hình chữ nhật với\(AC=a\sqrt{3}\)và \(BC=a\). Tính khoảng cách giữa \(SD\) và \(BC\).
- Cho hàm số \(y=\frac{x+m}{x-1}\) có đồ thị là đường cong \(\left( H \right)\) và đường thẳng \(\Delta \) có phương trình \(y=x+1\). Số giá trị nguyên của tham số \(m\) nhỏ hơn 10 để đường thẳng \(\Delta \) cắt đường cong \(\left( H \right)\) tại hai điểm phân biệt nằm về hai nhánh của đồ thị.
- Số giá trị nguyên của tham số \(m\) để hàm số \(y=m{{x}^{4}}-\left( m-3 \right){{x}^{2}}+{{m}^{2}}\) không có điểm cực đại là
- Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy \(ABC\) là tam giác vuông tại \(A\). Biết \(AB=A{A}'=a\), \(AC=2a\). Gọi \(M\) là trung điểm của \(AC\). Diện tích mặt cầu ngoại tiếp tứ diện \(M{A}'{B}'{C}'\) bằng
- Tìm \(m\) để tiếp tuyến của đồ thị hàm số \(\left( C \right):y=\left( 2m-1 \right){{x}^{4}}-m{{x}^{2}}+8\) tại điểm có hoành độ \(x=1\) vuông góc với đường thẳng \(\left( d \right):2x-y-3=0\).
- Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy \(ABC\) là tam giác vuông tại \(A\), gọi \(M\) là trung điểm của cạnh \(AA'\), biết rằng \(AB=2a;\)\(BC=a\sqrt{7}\) và \(\text{AA}'=6a\). Khoảng cách giữa \(\text{A }\!\!'\!\!\text{ B}\) và \(CM\) là:
- Cho tứ diện \(ABCD\) có \(AC=AD=BC=BD=1\), mặt phẳng\(\left( ABC \right)\bot (ABD)\) và \(\left( ACD \right)\bot (BCD)\). Khoảng cách từ \(A\) đến mặt phẳng \(\left( BCD \right)\)là:
- Cho hàm đa thức \(y=f(x)\). Hàm số \(y=f'(x)\) có đồ thị như hình vẽ sau Có bao nhiêu giá trị của \(m\in \left[ 0;\,6 \right];\,2m\in \mathbb{Z}\) để hàm số \(g(x)=f\left( {{x}^{2}}-2\left| x-1 \right|-2x+m \right)\) có đúng \(9\) điểm cực trị?
- Cho hàm số \(y=f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y=\frac{1}{f\left( x \right)+2}\) có tất cả bao nhiêu đường tiệm cận?
- Cho hàm số \(f(x)\) liên tục trên \(\left[ 2;4 \right]\) và có bảng biến thiên như hình vẽ bên Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(x+2\sqrt{{{x}^{2}}-2x}=m.f(x)\) có nghiệm thuộc đoạn \(\left[ 2;4 \right]\) ?
- Cho hàm số \(y=\left( x+1 \right)\left( 2x+1 \right)\left( 3x+1 \right)\left( m+\left| 2x \right| \right)\) và \(y=-12{{x}^{4}}-22{{x}^{3}}-{{x}^{2}}+10x+3\) có đồ thị lần lượt là \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\) . có bao nhiêu giá trị nguyên của tham số \)m\) trên đoạn \(\left[ -2020;2020 \right]\) để \(\left( {{C}_{1}} \right)\) cắt \(\left( {{C}_{2}} \right)\) tại \(3\) điểm phân biệt.
- Cho hình chóp \(S.ABC\) có \(SA=x\), \(BC=y\), \(AB=AC=SB=SC=1\). Thể tích khối chóp \(S.ABC\) lớn nhất khi tổng \(\left( x+y \right)\) bằng
- Một hộp đựng 3 viên bi màu xanh, 5 viên bi màu đỏ, 6 viên bi màu trắng và 7 viên bi màu đen. Chọn ngẫu nhiên đồng thời từ hộp 4 viên bi, tính xác suất để 4 viên bi được chọn không nhiều hơn 3 màu và luôn có bi màu xanh?
- Cho \(4\) số \(a,\,b,\,c,\,d\) thỏa mãn điều kiện \({{a}^{2}}+{{b}^{2}}=4a+6b-9\) và \(3c+4d=1\). Tìm giá trị nhỏ nhất của biểu thức \(P={{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}\) ?
- Cho \(x,y\) là các số thực thỏa mãn \({{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+2y \right)\). Giá trị tỉ số \(\frac{x}{y}\) là
- Cho hình chóp \(S.ABCD\) có đáy là hình vuông, cạnh bên \(SA\) vuông góc với đáy. Gọi \(M\), \(N\) là trung điểm của \(SA\), \(SB\). Mặt phẳng \(MNCD\) chia hình chóp đã cho thành hai phần. tỉ số thể tích hai phần \(S.MNCD\) và \(MNABCD\) là
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Ôn tập Toán 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn bài Vợ chồng A Phủ
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 10 Lớp 12 Endangered Species
Tiếng Anh 12 mới Review 2
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Vật lý 12 Chương 4
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 5
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 2 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 4 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 Địa lý dân cư
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 2
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 4
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 3
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Tuyên Ngôn Độc Lập
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Vợ Nhặt
Đất Nước- Nguyễn Khoa Điềm
Chiếc thuyền ngoài xa
Vợ chồng A Phủ
Việt Bắc
Những đứa con trong gia đình
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Tiệm Cận đứng Của đồ Thị Hàm Số Y Bằng 3 X Cộng 2 Trên X Trừ 2 Là đường Thẳng Có Phương Trình
-
Tiệm Cận đứng Của đồ Thị Hàm Số (y=dfrac{3x+2}{x-2}) Là đường ...
-
Tìm đường Tiệm Cận đứng Của đồ Thị Hàm Số Y= 3 - 2x / X
-
Tìm đường Tiệm Cận đứng Của đồ Thị Hàm Số \({y=\frac{3-2x}{x-2}}\)
-
Đường Tiệm Cận đứng Của đồ Thị Hàm Số Y=2x-3/x-1là...
-
Đồ Thị Hàm Số Y=-3x+1/x+2 Có Các đường Tiệm Cận đứng, Tiệm
-
Tiệm Cận đứng Của đồ Thị Hàm Số Y Bằng 3 X Công 2 Trên X Trừ 1 Là
-
Phương Trình đường Tiệm Cận đứng Của đồ Thị Hàm Số Y = (((x^2) - 3x
-
Tổng Số đường Tiệm Cận đứng Và Tiệm Cận Ngang Của đồ Thị Hàm Số ...
-
Tìm Phương Trình đường Tiệm Cận Ngang Của đồ Thị Hàm Số Y =3x+2
-
Cách Tìm Tiệm Cận đứng Của đồ Thị Hàm Số Chính Xác 100%
-
đường Tiệm Cận đứng Của đồ Thị Hàm Số Y Bằng 3 X Cộng 1 Trên X Trừ ...
-
[LỜI GIẢI] Đồ Thị Hàm Số Y = 1 - 3xx + 2 Có Các đường Tiệm Cận đứng ...
-
Bài Tập Tìm M để Hàm Số Có Tiệm Cận đứng, Tiệm Cận Ngang Có đáp án
-
Khi đó đường Thẳng Nào Sau đây Là đường Tiệm Cận đứng Của đồ Thị ...