Số Nguyên Tố đối Xứng – Wikipedia Tiếng Việt

Bước tới nội dung

Nội dung

chuyển sang thanh bên ẩn
  • Đầu
  • 1 Bên lề
  • 2 Tài nguyên tham khảo
  • Bài viết
  • Thảo luận
Tiếng Việt
  • Đọc
  • Sửa đổi
  • Sửa mã nguồn
  • Xem lịch sử
Công cụ Công cụ chuyển sang thanh bên ẩn Tác vụ
  • Đọc
  • Sửa đổi
  • Sửa mã nguồn
  • Xem lịch sử
Chung
  • Các liên kết đến đây
  • Thay đổi liên quan
  • Thông tin trang
  • Trích dẫn trang này
  • Tạo URL rút gọn
  • Tải mã QR
In và xuất
  • Tạo một quyển sách
  • Tải dưới dạng PDF
  • Bản để in ra
Tại dự án khác
  • Khoản mục Wikidata
Giao diện chuyển sang thanh bên ẩn Bách khoa toàn thư mở Wikipedia

Số nguyên tố đối xứng là một số nguyên tố bằng trung bình cộng của 2 số nguyên tố liền trước và liền sau nó. Với p n {\displaystyle p_{n}} là số nguyên tố thứ n, một số nguyên tố là đối xứng khi thoả: p n = p n − 1 + p n + 1 2 . {\displaystyle p_{n}={{p_{n-1}+p_{n+1}} \over 2}.} Số nguyên tố đối xứng nhỏ nhất là 5, 10 số nguyên tố đối xứng đầu tiên là: 5, 53, 157, 173, 211, 257, 263, 373, 563, 593. Nếu coi 1 cũng là số nguyên tố thì 2 là số nguyên tố đối xứng nhỏ nhất vì: 2 = ( 1 + 3 ) 2 . {\displaystyle 2={(1+3) \over 2}.}

Có giả thuyết cho rằng có vô số số nguyên tố đối xứng.

Năm 2005 số nguyên tố đối xứng lớn nhất gồm 7535 chữ số được François Morain và David Broadhurst tìm ra[1] khi thực hiện thuật toán:: p n = 197418203 × 2 25000 − 1 , p n − 1 = p n − 6090 , p n + 1 = p n + 6090. {\displaystyle p_{n}=197418203\times 2^{25000}-1,p_{n-1}=p_{n}-6090,p_{n+1}=p_{n}+6090.} giá trị của n không xác định.

Bên lề

[sửa | sửa mã nguồn]

Khi một số nguyên tố lớn hơn trung bình cộng hai số nguyên tố nằm cạnh nó, nó được gọi là số nguyên tố mạnh, nếu nhỏ hơn là số nguyên tố yếu.

Tài nguyên tham khảo

[sửa | sửa mã nguồn]
  1. ^ Các bộ số nguyên tố lớn nhất Lưu trữ ngày 24 tháng 4 năm 2006 tại Wayback Machine (bằng tiếng Anh)
Stub icon

Bài viết liên quan đến toán học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.

  • x
  • t
  • s
  • x
  • t
  • s
Phân loại các số nguyên tố
Theo công thức
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Mersenne kép (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Giai thừa (n! ± 1)
  • Primorial (pn# ± 1)
  • Euclid (pn# + 1)
  • Pythagorean (4n + 1)
  • Pierpont (2u·3v + 1)
  • Quartan (x4 + y4)
  • Solinas (2a ± 2b ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Cuban (x3 − y3)/(x − y)
  • Carol (2n − 1)2 − 2
  • Kynea (2n + 1)2 − 2
  • Leyland (xy + yx)
  • Thabit (3·2n − 1)
  • Mills (A3n)
Theo dãy số nguyên
  • Fibonacci
  • Lucas
  • Pell
  • Newman–Shanks–Williams
  • Perrin
  • Phân hoạch
  • Bell
  • Motzkin
Theo tính chất
  • (Cặp Wieferich)
  • Wall–Sun–Sun
  • Wolstenholme
  • Wilson
  • May rủi
  • May mắn
  • Ramanujan
  • Pillai
  • Chính quy
  • Mạnh
  • Stern
  • Siêu trội (đối với đường cong elliptic)
  • Siêu trội (trong thuyết Ánh trăng)
  • Tốt
  • Siêu phàm
  • Higgs
  • Fortune
Phụ thuộc vào hệ số
  • May mắn
  • Nhị diện
  • Palindromic
  • Emirp
  • Repunit (10n − 1)/9
  • Hoán vị
  • Vòng
  • Rút ngắn được
  • Strobogrammatic
  • Tối thiểu
  • Yếu
  • Đầy đủ
  • Đơn nhất
  • Nguyên thủy
  • Smarandache–Wellin
Theo mô hình
  • Sinh đôi (p, p + 2)
  • Chuỗi bộ đôi (n − 1, n + 1, 2n − 1, 2n + 1, …)
  • Bộ tam (p, p + 2 or p + 4, p + 6)
  • Bộ tứ (p, p + 2, p + 6, p + 8)
  • Bộ k
  • Họ hàng (p, p + 4)
  • Sexy (p, p + 6)
  • Chen
  • Sophie Germain (p, 2p + 1)
  • chuỗi Cunningham (p, 2p ± 1, …)
  • An toàn (p, (p − 1)/2)
  • Trong cấp số cộng (p + a·n, n = 0, 1, …)
  • Đối xứng (consecutive p − n, p, p + n)
Theo kích thước
  • Hàng nghìn (1,000+ chữ số)
  • Hàng chục nghìn (10,000+ chữ số)
  • Hàng triệu (1,000,000+ chữ số)
  • Lớn nhất từng biết
Số phức
  • Số nguyên tố Eisenstein
  • Số nguyên tố Gauss
Hợp số
  • Số giả nguyên tố
  • Số gần nguyên tố
  • Số nửa nguyên tố
  • Giữa các nguyên tố
Chủ đề liên quan
  • Số có thể nguyên tố
  • Số nguyên tố cấp công nghiệp
  • Số nguyên tố bất chính
  • Công thức của số nguyên tố
  • Khoảng cách nguyên tố
50 số nguyên tố đầu
  • 2
  • 3
  • 5
  • 7
  • 11
  • 13
  • 17
  • 19
  • 23
  • 29
  • 31
  • 37
  • 41
  • 43
  • 47
  • 53
  • 59
  • 61
  • 67
  • 71
  • 73
  • 79
  • 83
  • 89
  • 97
  • 101
  • 103
  • 107
  • 109
  • 113
  • 127
  • 131
  • 137
  • 139
  • 149
  • 151
  • 157
  • 163
  • 167
  • 173
  • 179
  • 181
  • 191
  • 193
  • 197
  • 199
  • 211
  • 223
  • 227
  • 229
Danh sách số nguyên tố
Lấy từ “https://vi.wikipedia.org/w/index.php?title=Số_nguyên_tố_đối_xứng&oldid=74178119” Thể loại:
  • Sơ khai toán học
  • Số nguyên tố
  • Vấn đề chưa được giải quyết trong toán học
Thể loại ẩn:
  • Bản mẫu webarchive dùng liên kết wayback
  • Bài viết có nguồn tham khảo tiếng Anh (en)
  • Tất cả bài viết sơ khai
Tìm kiếm Tìm kiếm Đóng mở mục lục Số nguyên tố đối xứng 15 ngôn ngữ Thêm đề tài

Từ khóa » Số đối Xứng Wiki