Số Nửa Nguyên Tố – Wikipedia Tiếng Việt

Bước tới nội dung

Nội dung

chuyển sang thanh bên ẩn
  • Đầu
  • 1 Ứng dụng
  • 2 Xem thêm
  • 3 Tham khảo
  • 4 Liên kết ngoài
  • Bài viết
  • Thảo luận
Tiếng Việt
  • Đọc
  • Sửa đổi
  • Sửa mã nguồn
  • Xem lịch sử
Công cụ Công cụ chuyển sang thanh bên ẩn Tác vụ
  • Đọc
  • Sửa đổi
  • Sửa mã nguồn
  • Xem lịch sử
Chung
  • Các liên kết đến đây
  • Thay đổi liên quan
  • Thông tin trang
  • Trích dẫn trang này
  • Tạo URL rút gọn
  • Tải mã QR
In và xuất
  • Tạo một quyển sách
  • Tải dưới dạng PDF
  • Bản để in ra
Tại dự án khác
  • Wikifunctions
  • Khoản mục Wikidata
Giao diện chuyển sang thanh bên ẩn Bách khoa toàn thư mở Wikipedia

Trong toán học, số nửa nguyên tố (tiếng Anh: semiprime, còn gọi là biprime, 2-almost prime, hoặc số pq) là số tự nhiên được tạo thành từ tích của hai số nguyên tố (không nhất thiết phân biệt). Một vài số nửa nguyên tố đầu tiên là 4, 6, 9, 10, 14, 15, 21, 22, 25, 26,... (dãy số A001358 trong bảng OEIS).

Tính đến năm 2008, số nửa nguyên tố lớn nhất được biết đến là (243.112.609 − 1)2, với hơn 25 triệu chữ số. Nó là bình phương của số nguyên tố lớn nhất được biết. Bình phương của bất kì số nguyên tố nào cũng đều là số nửa nguyên tố, do đó số nửa nguyên tố tiếp theo được biết đến vẫn sẽ là bình phương của số nguyên tố lớn nhất được biết, trừ khi tìm ra được một phương pháp khẳng định một số lớn là số nửa nguyên tố mà không cần biết hai nhân tử của nó.[1]

Giá trị của Phi hàm Euler cho số nửa nguyên tố n = pq khi pq phân biệt là:

φ(n) = (p − 1) (q − 1) = p q − (p + q) + 1 = n − (p + q) + 1.

Ứng dụng

[sửa | sửa mã nguồn]

Số nửa nguyên tố đặc biệt hữu ích trong lĩnh vực mật mã học và lý thuyết số, đáng kể nhất là trong mật mã hóa khóa công khai, được sử dụng bởi RSA và bộ tạo số giả ngẫu nhiên như Blum Blum Shub. Phương pháp này dựa vào việc nhân hai số nguyên tố lớn thì dễ nhưng ngược lại, việc tìm nguyên mẫu hai số ban đầu thì khó.

Xem thêm

[sửa | sửa mã nguồn]
  • Định lý Chen

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Chris Caldwell, The Prime Glossary: semiprime tại The Prime Pages. Truy cập vào 4-12-2007.

Liên kết ngoài

[sửa | sửa mã nguồn]
  • Weisstein, Eric W., "Semi prime" từ MathWorld.
Stub icon

Bài viết liên quan đến toán học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.

  • x
  • t
  • s
  • x
  • t
  • s
Phân loại các số nguyên tố
Theo công thức
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Mersenne kép (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Giai thừa (n! ± 1)
  • Primorial (pn# ± 1)
  • Euclid (pn# + 1)
  • Pythagorean (4n + 1)
  • Pierpont (2u·3v + 1)
  • Quartan (x4 + y4)
  • Solinas (2a ± 2b ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Cuban (x3 − y3)/(x − y)
  • Carol (2n − 1)2 − 2
  • Kynea (2n + 1)2 − 2
  • Leyland (xy + yx)
  • Thabit (3·2n − 1)
  • Mills (A3n)
Theo dãy số nguyên
  • Fibonacci
  • Lucas
  • Pell
  • Newman–Shanks–Williams
  • Perrin
  • Phân hoạch
  • Bell
  • Motzkin
Theo tính chất
  • (Cặp Wieferich)
  • Wall–Sun–Sun
  • Wolstenholme
  • Wilson
  • May rủi
  • May mắn
  • Ramanujan
  • Pillai
  • Chính quy
  • Mạnh
  • Stern
  • Siêu trội (đối với đường cong elliptic)
  • Siêu trội (trong thuyết Ánh trăng)
  • Tốt
  • Siêu phàm
  • Higgs
  • Fortune
Phụ thuộc vào hệ số
  • May mắn
  • Nhị diện
  • Palindromic
  • Emirp
  • Repunit (10n − 1)/9
  • Hoán vị
  • Vòng
  • Rút ngắn được
  • Strobogrammatic
  • Tối thiểu
  • Yếu
  • Đầy đủ
  • Đơn nhất
  • Nguyên thủy
  • Smarandache–Wellin
Theo mô hình
  • Sinh đôi (p, p + 2)
  • Chuỗi bộ đôi (n − 1, n + 1, 2n − 1, 2n + 1, …)
  • Bộ tam (p, p + 2 or p + 4, p + 6)
  • Bộ tứ (p, p + 2, p + 6, p + 8)
  • Bộ k
  • Họ hàng (p, p + 4)
  • Sexy (p, p + 6)
  • Chen
  • Sophie Germain (p, 2p + 1)
  • chuỗi Cunningham (p, 2p ± 1, …)
  • An toàn (p, (p − 1)/2)
  • Trong cấp số cộng (p + a·n, n = 0, 1, …)
  • Đối xứng (consecutive p − n, p, p + n)
Theo kích thước
  • Hàng nghìn (1,000+ chữ số)
  • Hàng chục nghìn (10,000+ chữ số)
  • Hàng triệu (1,000,000+ chữ số)
  • Lớn nhất từng biết
Số phức
  • Số nguyên tố Eisenstein
  • Số nguyên tố Gauss
Hợp số
  • Số giả nguyên tố
  • Số gần nguyên tố
  • Số nửa nguyên tố
  • Giữa các nguyên tố
Chủ đề liên quan
  • Số có thể nguyên tố
  • Số nguyên tố cấp công nghiệp
  • Số nguyên tố bất chính
  • Công thức của số nguyên tố
  • Khoảng cách nguyên tố
50 số nguyên tố đầu
  • 2
  • 3
  • 5
  • 7
  • 11
  • 13
  • 17
  • 19
  • 23
  • 29
  • 31
  • 37
  • 41
  • 43
  • 47
  • 53
  • 59
  • 61
  • 67
  • 71
  • 73
  • 79
  • 83
  • 89
  • 97
  • 101
  • 103
  • 107
  • 109
  • 113
  • 127
  • 131
  • 137
  • 139
  • 149
  • 151
  • 157
  • 163
  • 167
  • 173
  • 179
  • 181
  • 191
  • 193
  • 197
  • 199
  • 211
  • 223
  • 227
  • 229
Danh sách số nguyên tố
Lấy từ “https://vi.wikipedia.org/w/index.php?title=Số_nửa_nguyên_tố&oldid=69282688” Thể loại:
  • Sơ khai toán học
  • Dãy nguyên
  • Số nguyên tố
  • Lý thuyết mật mã
  • Chuỗi số nguyên
Thể loại ẩn:
  • Tất cả bài viết sơ khai
Tìm kiếm Tìm kiếm Đóng mở mục lục Số nửa nguyên tố 33 ngôn ngữ Thêm đề tài

Từ khóa » Số Bán Nguyên Là Gì