Số Tiếp Tuyến Của đồ Thị Hàm Số (y = (x^4) - 2(x^2) - 3 ) Song S
Có thể bạn quan tâm
Một sản phẩm của Tuyensinh247.com
Số tiếp tuyến của đồ thị hàm số (y = (x^4) - 2(x^2) - 3 ) song song với trục hoành là :Câu 57144 Vận dụngSố tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là :
Đáp án đúng: cÔn thi đánh giá năng lực 2024 - lộ trình 5v bài bảnkhám pháPhương pháp giải
Tìm số nghiệm của phương trình \(y' = 0\).
Xem lời giải
Lời giải của GV Vungoi.vn
Phương trình trục hoành: \(y = 0\).
Ta có \(y' = 4{x^3} - 4x \Rightarrow \) Hệ số góc của tiếp tuyến tại điểm có hoành độ \(x = {x_0}\) là \(y'\left( {{x_0}} \right) = 4x_0^3 - 4{x_0}\).
Tiếp tuyến // Ox \( \Rightarrow y'\left( {{x_0}} \right) = 0 \Leftrightarrow 4x_0^3 - 4{x_0} = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = \pm 1\end{array} \right.\).
Khi \(x=0\) ta được một tiếp tuyến là \(y=-3\).
Khi \(x=\pm1\) ta tìm được hai tiếp tuyến trùng nhau là \(y=-4\)
Vậy có hai tiếp tuyến song song với trục hoành.
Đáp án cần chọn là: c
DÀNH CHO 2K6 – LỘ TRÌNH ÔN THI ĐÁNH GIÁ NĂNG LỰC 2024!
Bạn đăng băn khoăn tìm hiểu tham gia thi chưa biết hỏi ai?
Bạn cần lộ trình ôn thi bài bản từ những người am hiểu về kì thi và đề thi?
Bạn cần thầy cô đồng hành suốt quá trình ôn luyện?
Vậy thì hãy xem ngay lộ trình ôn thi bài bản tại ON.TUYENSINH247:
- Hệ thống kiến thức trọng tâm & làm quen các dạng bài chỉ có trong kỳ thi ĐGNL
- Phủ kín lượng kiến thức với hệ thống ngân hàng hơn 15.000 câu hỏi độc quyền
- Học live tương tác với thầy cô kết hợp tài khoản tự luyện chủ động trên trang
Xem thêm thông tin khoá học & Nhận tư vấn miễn phí - TẠI ĐÂY
...
Bài tập có liên quan
Bài toán tiếp tuyến với đồ thị và sự tiếp xúc của hai đường cong Luyện NgayGroup Ôn Thi ĐGNL & ĐGTD Miễn Phí
![]()
Hệ số góc của tiếp tuyến của đồ thị hàm số $y = \dfrac{{{x^4}}}{4} + \dfrac{{{x^2}}}{2} - 1$ tại điểm có hoành độ $x = - 1$ là:
Viết phương trình tiếp tuyến của đồ thị hàm số $y = - 2{x^3} + 4x + 2$ tại điểm có hoành độ bằng $0.$
Viết phương trình tiếp tuyến của đồ thị hàm số $y = - {x^4} + 6{x^2} - 5$ tại điểm cực tiểu của nó.
Có bao nhiêu tiếp tuyến với đồ thị $\left( C \right):y = {x^4} - 2{x^2}$ đi qua gốc tọa độ $O$?
Tiếp tuyến của đồ thị hàm số $y = \dfrac{{{x^3}}}{3} - 2{x^2} + x + 2$ song song với đường thẳng $y = - 2x + 5$ có phương trình là:
Giả sử tiếp tuyến của đồ thị hàm số $y = 2{x^3} - 6{x^2} + 18x + 1$ song song với đường thẳng $d:12x - y = 0$ có dạng $y = ax + b$. Khi đó tổng $a + b$ là:
Đồ thị hàm số nào sau đây có tiếp tuyến tại giao điểm của đồ thị và trục tung có hệ số góc âm?
Cho hàm số $y = {x^3} - 3{x^2} + 5x - 2$ có đồ thị $(C)$. Viết phương trình tiếp tuyến của đồ thị $(C)$ có hệ số góc nhỏ nhất.
Cho hàm số: $y={{x}^{3}}-{{x}^{2}}+1$ . Tìm điểm nằm trên đồ thị hàm số sao cho tiếp tuyến tại điểm đó có hệ số góc nhỏ nhất.
Cho hàm số $y = {x^4} - 2(m + 1){x^2} + m + 2$ có đồ thị $\left( C \right)$. Gọi $\Delta $ là tiếp tuyến với đồ thị $\left( C \right)$ tại điểm thuộc $\left( C \right)$ có hoành độ bằng $1$. Với giá trị nào của tham số $m$ thì $\Delta $ vuông góc với đường thẳng $d:y = - \dfrac{1}{4}x - 2016$
Cho hàm số $y = \dfrac{{2x - 1}}{{x - 1}}\,\,\,\left( C \right)$. Tìm điểm $M$ thuộc $(C)$ sao cho tiếp tuyến tại $M$ và hai trục tọa độ tạo thành tam giác cân.
Cho hàm số $y = f\left( x \right) = \dfrac{{{x^3}}}{3} - m{x^2} - 6mx - 9m + 12$ có đồ thị hàm số $\left( {{C_m}} \right)$. Khi tham số m thay đổi, các đồ thị $\left( {{C_m}} \right)$ đều tiếp xúc với một đường thẳng cố định. Đường thẳng này có phương trình:
Cho hàm số $y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)$.Tồn tại hai tiếp tuyến của $(C)$ phân biệt và có cùng hệ số góc $k$, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục $Ox, Oy$ tương ứng tại $A$ và $B$ sao cho $OA = 2017.OB.$ Hỏi có bao nhiêu giá trị của $k$ thỏa mãn yêu cầu bài toán?
Tìm tất cả các giá trị của tham số $m$ để đường thẳng $y = - 2x + m$ cắt đồ thị $(H)$ của hàm số $y = \dfrac{{2x + 3}}{{x + 2}}$ tại hai điểm$A,{\text{ }}B$ phân biệt sao cho $P = k_1^{2018} + k_2^{2018}$ đạt giá trị nhỏ nhất (với ${k_1},{k_2}$ là hệ số góc của tiếp tuyến tại $A,{\text{ }}B$ của đồ thị $(H)$.
Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$
Cho hàm số $\left( {{C_m}} \right):y = {x^3} + m{x^2} - 9x - 9m.$ Tìm $m$ để $\left( {{C_m}} \right)$ tiếp xúc với $Ox$:
Gọi \(S\) là tập hợp các giá trị nguyên của \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - \left( {m - 1} \right){x^2} + \left( {m - 1} \right)x + 5\) đều có hệ số góc dương. Số phần tử của tập \(S\) là:
Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
Cho hàm số $y = {x^3} - 3{x^2} + 2x - 5$ có đồ thị $\left( C \right)$. Có bao nhiêu cặp điểm thuộc đồ thị $\left( C \right)$ mà tiếp tuyến với đồ thị tại chúng là hai đường thẳng song song?
Cho hàm số $y = {x^3} + ax + b\,\,\left( {a \ne b} \right)$. Tiếp tuyến với đồ thị hàm số $f\left( x \right)$ tại $x = a$ và $x = b$ song song với nhau. Tính $f\left( 1 \right).$
Cho các hàm số $y = f (x), y = g (x), y = \dfrac{{f\left( x \right) + 3}}{{g\left( x \right) + 1}}$ . Hệ số góc của các tiếp tuyến của đồ thị các hàm số đã cho tại điểm có hoành độ $x = 1$ bằng nhau và khác $0$. Khẳng định nào dưới đây là khẳng định đúng?
Cho hàm số \(y = \dfrac{{x + 2}}{{x - 1}}\) có đồ thị là \(\left( C \right)\) tại điểm \(M\left( {2;4} \right)\) có hệ số góc bằng bao nhiêu?
Phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) tại điểm có hoành độ bằng 1 có dạng \(y=ax+b\), khi đó \(a+b\) bằng:
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị \(\left( C \right)\). Hệ số góc của tiếp tuyến với \(\left( C \right)\) tại điểm \(M\left( { - 1;2} \right)\) bằng:
Hệ số góc của tiếp tuyến với đồ thị hàm số \(y = \dfrac{{5x - 1}}{{x + 1}}\) tại giao điểm với trục tung là
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y={{x}^{4}}-3{{x}^{2}}+1\) tại các điểm có tung độ bằng \(5\)?
Từ khóa » Tiếp Tuyến đồ Thị Song Song Với Trục Hoành
-
Số Tiếp Tuyến Của đồ Thị Hàm Số Y = X^4 - 2x^2 - 3 Song Song Với Trục ...
-
Tìm Số Tiếp Tuyến Song Song Với Trục Hoành Của ...
-
Tìm Số Tiếp Tuyến Song Song Với Trục Hoành Của đồ Thị Hàm Số
-
Đồ Thị Hàm Số Có Bao Nhiêu Tiếp Tuyến Song Song Với Trục Hoành:
-
Tại Sao Từ Song Song Với Trục Hoành Lại => Y = 0, Ai Giải Thích Giúp ...
-
Số Tiếp Tuyến Song Song Với Trục Hoành Của đồ Thị Hàm Số Y =x^4 -2x^2
-
Tìmsố Tiếp Tuyến Song Song Với Trục Hoành Của đồ Thị Hàm Số $y={{x ...
-
Đồ Thị Hàm Số Y = X^4 - 4x^2 Có Bao Nhiêu Tiếp Tuyến Song Song Với
-
Cho Hàm Số Y = X^2 – 6x + 5 Có Tiếp Tuyến Song Song Với Trục Hoành
-
Đồ Thị Song Song Với Trục Hoành - Xây Nhà
-
Gọi (C) Là đồ Thị Của Hàm Số . Câu 53 Trang 221 SGK Đại Số Và Giải ...
-
Tìm Hoành độ Tiếp điểm Của Tiếp Tuyến Song Song Với Trục ... - Selfomy
-
Viết Phương Trình Tiếp Tuyến Song Song Với Trục Hoành Của đồ Thị ...