Solve Addingsubtractingfindingleastcommonmultiple G/(g2-h2)
Reformatting the input :
Changes made to your input should not affect the solution: (1): "h2" was replaced by "h^2". 1 more similar replacement(s).
Step 1 :
h Simplify ————— g - hEquation at the end of step 1 :
g h ———————————-((g•———)•2) ((g2)-(h2)) g-hStep 2 :
Equation at the end of step 2 :
g gh ———————————-(———•2) ((g2)-(h2)) g-hStep 3 :
Equation at the end of step 3 :
g 2gh ————————————— - ————— ((g2) - (h2)) g - hStep 4 :
g Simplify ——————— g2 - h2Trying to factor as a Difference of Squares :
4.1 Factoring: g2 - h2 Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)Proof : (A+B) • (A-B) = A2 - AB + BA - B2 = A2 - AB + AB - B2 = A2 - B2Note : AB = BA is the commutative property of multiplication. Note : - AB + AB equals zero and is therefore eliminated from the expression.Check : g2 is the square of g1 Check : h2 is the square of h1 Factorization is : (g + h) • (g - h)
Equation at the end of step 4 :
g 2gh ————————————————— - ————— (g + h) • (g - h) g - hStep 5 :
Calculating the Least Common Multiple :
5.1 Find the Least Common Multiple The left denominator is : (g+h) • (g-h) The right denominator is : g-h
Algebraic Factor | Left Denominator | Right Denominator | L.C.M = Max {Left,Right} |
---|---|---|---|
g+h | 1 | 0 | 1 |
g-h | 1 | 1 | 1 |
Least Common Multiple: (g+h) • (g-h)
Calculating Multipliers :
5.2 Calculate multipliers for the two fractions Denote the Least Common Multiple by L.C.M Denote the Left Multiplier by Left_M Denote the Right Multiplier by Right_M Denote the Left Deniminator by L_Deno Denote the Right Multiplier by R_Deno Left_M = L.C.M / L_Deno = 1 Right_M = L.C.M / R_Deno = g+h
Making Equivalent Fractions :
5.3 Rewrite the two fractions into equivalent fractionsTwo fractions are called equivalent if they have the same numeric value. For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well. To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
L. Mult. • L. Num. g —————————————————— = ————————————— L.C.M (g+h) • (g-h) R. Mult. • R. Num. 2gh • (g+h) —————————————————— = ————————————— L.C.M (g+h) • (g-h)Adding fractions that have a common denominator :
5.4 Adding up the two equivalent fractions Add the two equivalent fractions which now have a common denominatorCombine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
g - (2gh • (g+h)) -2g2h - 2gh2 + g ————————————————— = ————————————————— (g+h) • (g-h) (g + h) • (g - h)Step 6 :
Pulling out like terms :
6.1 Pull out like factors : -2g2h - 2gh2 + g = -g • (2gh + 2h2 - 1)
Trying to factor a multi variable polynomial :
6.2 Factoring 2gh + 2h2 - 1 Try to factor this multi-variable trinomial using trial and errorFactorization fails
Final result :
+g • (2gh + 2h2 + 1) ———————————————————— (g + h) • (g + h)Từ khóa » G2-h2
-
Geneva Global Health Hub: G2H2
-
Geneva Global Health Hub (G2H2)
-
SPIRAX SARCO G2-H2 60243 HEAD SEAT ASSEMBLY W/GASKET ...
-
AXJ-6124-N1-N4-N5-E1-G2-H2-I1-J1-M3-P1-Q :: AKR - Rexel USA
-
SEM Images Of The Samples D2, E2, And F2, And G2, H2, And I1 After...
-
G2/H2 Phase And Magnitude Calculation - ResearchGate
-
G2H2 Capital - Crunchbase Investor Profile & Investments
-
G2H2 Pittsburgh - QBurgh
-
G2H2 Capital - LinkedIn
-
Saponin And Sapogenol. XLVIII. On The Constituents Of The ... - PubMed
-
G2H2 Cleveland - March 20, 2020 - 6:00 - 9:00pm CANCELLED
-
Geneva Global Health Hub - G2H2 | Genève Internationale