Solve F(x)=3x-1yg(x)=x^2-x-2quad(f-g)(x) | Microsoft Math Solver
Có thể bạn quan tâm
Skip to main contentSolvePracticePlay
Topics
Pre-Algebra- Mean
- Mode
- Greatest Common Factor
- Least Common Multiple
- Order of Operations
- Fractions
- Mixed Fractions
- Prime Factorization
- Exponents
- Radicals
- Combine Like Terms
- Solve for a Variable
- Factor
- Expand
- Evaluate Fractions
- Linear Equations
- Quadratic Equations
- Inequalities
- Systems of Equations
- Matrices
- Simplify
- Evaluate
- Graphs
- Solve Equations
- Derivatives
- Integrals
- Limits
Topics
Pre-Algebra- Mean
- Mode
- Greatest Common Factor
- Least Common Multiple
- Order of Operations
- Fractions
- Mixed Fractions
- Prime Factorization
- Exponents
- Radicals
- Combine Like Terms
- Solve for a Variable
- Factor
- Expand
- Evaluate Fractions
- Linear Equations
- Quadratic Equations
- Inequalities
- Systems of Equations
- Matrices
- Simplify
- Evaluate
- Graphs
- Solve Equations
- Derivatives
- Integrals
- Limits
Similar Problems from Web Search
Find the maxima, minima and saddle points (if exists) of the following function f(x,y) = x^2-x^2 y+2xy^2 +4y?https://www.quora.com/Find-the-maxima-minima-and-saddle-points-if-exists-of-the-following-function-f-x-y-x-2-x-2-y+2xy-2-+4y Extrema in multiple dimensions are the same as in one dimension with the derivative replaced by the gradient: \nabla f(x,y,z) = 0 You can find the curvature of each dimension by taking the ... Factoring x^2-y^2-z^2+2yz+x+y-zhttps://math.stackexchange.com/questions/2703737/factoring-x2-y2-z22yzxy-z \begin{align}x^2-y^2-z^2+2yz+x+y-z&=x^2-(y-z)^2+x+y-z\\&=(x+(y-z))(x-(y-z))+x+y-z\\&=(x+y-z)(x-y+z+1)\end{align} Prove that m=(x+y^2, y+x^2+2xy^2+y^4) is a maximal ideal of \mathbb{C}[x,y].https://math.stackexchange.com/questions/542608/prove-that-m-xy2-yx22xy2y4-is-a-maximal-ideal-of-mathbbcx-y As Tbrendle said in the comments, you can show that \mathbb C[x,y]/m is a field. This is equivalent to m being a maximal ideal of \mathbb C[x,y]. So consider the quotient R:= \mathbb C[x,y]/m. ... Consider the map f \colon \Bbb R^2 \rightarrow \Bbb R^2 defined by f(x,y)=(3x-2y+x^2,4x+5y+y^2).https://math.stackexchange.com/questions/339363/consider-the-map-f-colon-bbb-r2-rightarrow-bbb-r2-defined-by-fx-y-3 Denote f_1(x,\; y)=3x-2y+x^2,\\ f_2(x,\; y)=4x+5y+y^2. Then Df(x,\;y)=\begin{pmatrix} \dfrac{\partial{f_1(x,\; y)}}{\partial{x}} && \dfrac{\partial{f_1(x,\; y)}}{\partial{y}} \\ \dfrac{\partial{f_2(x,\; y)}}{\partial{x}} && \dfrac{\partial{f_2(x,\; y)}}{\partial{y}} \end{pmatrix} Determine all possible values of z \in C that satisfy the equation 2z = (z*)^2.https://math.stackexchange.com/questions/342548/determine-all-possible-values-of-z-in-c-that-satisfy-the-equation-2z-z If a+ib=c+id where a,b,c,d are real a-c=i(d-b) Squaring we get (a-c)^2=-(d-b)^2\implies (a-c)^2+(d-b)^2=0 Now, sum of the squares of two real numbers is 0 So, each must be 0 as square of a ... Computing degree and ramification indices for given morphism of irreducible smooth curves in \mathbb P^2https://math.stackexchange.com/questions/141175/computing-degree-and-ramification-indices-for-given-morphism-of-irreducible-smoo In your local computation, if y_0=0, then \nu_p(t\phi)=\nu_p(y^2)=2, so e_p(\phi)=2.More ItemsShare
CopyCopied to clipboardx^{2}-x-2\left(f-g\right)x=3x-ygx Swap sides so that all variable terms are on the left hand side.x^{2}-x+\left(-2f+2g\right)x=3x-ygx Use the distributive property to multiply -2 by f-g.x^{2}-x-2fx+2gx=3x-ygx Use the distributive property to multiply -2f+2g by x.-x-2fx+2gx=3x-ygx-x^{2} Subtract x^{2} from both sides.-2fx+2gx=3x-ygx-x^{2}+x Add x to both sides.-2fx+2gx=4x-ygx-x^{2} Combine 3x and x to get 4x.-2fx=4x-ygx-x^{2}-2gx Subtract 2gx from both sides.\left(-2x\right)f=4x-2gx-gxy-x^{2} The equation is in standard form.\frac{\left(-2x\right)f}{-2x}=\frac{x\left(4-2g-gy-x\right)}{-2x} Divide both sides by -2x.f=\frac{x\left(4-2g-gy-x\right)}{-2x} Dividing by -2x undoes the multiplication by -2x.f=\frac{gy}{2}+\frac{x}{2}+g-2 Divide x\left(4-yg-x-2g\right) by -2x.3x-ygx+2\left(f-g\right)x=x^{2}-x Add 2\left(f-g\right)x to both sides.3x-ygx+\left(2f-2g\right)x=x^{2}-x Use the distributive property to multiply 2 by f-g.3x-ygx+2fx-2gx=x^{2}-x Use the distributive property to multiply 2f-2g by x.-ygx+2fx-2gx=x^{2}-x-3x Subtract 3x from both sides.-ygx+2fx-2gx=x^{2}-4x Combine -x and -3x to get -4x.-ygx-2gx=x^{2}-4x-2fx Subtract 2fx from both sides.\left(-yx-2x\right)g=x^{2}-4x-2fx Combine all terms containing g.\left(-xy-2x\right)g=x^{2}-2fx-4x The equation is in standard form.\frac{\left(-xy-2x\right)g}{-xy-2x}=\frac{x\left(x-2f-4\right)}{-xy-2x} Divide both sides by -yx-2x.g=\frac{x\left(x-2f-4\right)}{-xy-2x} Dividing by -yx-2x undoes the multiplication by -yx-2x.g=-\frac{x-2f-4}{y+2} Divide x\left(-4+x-2f\right) by -yx-2x.Examples
Quadratic equation { x } ^ { 2 } - 4 x - 5 = 0Trigonometry 4 \sin \theta \cos \theta = 2 \sin \thetaLinear equation y = 3x + 4Arithmetic 699 * 533Matrix \left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]Simultaneous equation \left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.Differentiation \frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }Integration \int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d xLimits \lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}Back to topTừ khóa » F(x)=2x-1 Y G(x)=x+2
-
1 Y G(x) = X + 2. Determina Las Funciones: A) Suma De F + G. B) Resta
-
"sea F(x)= 2x-1 Y G(x)= X2 Hallar (f O G) (x) + (g O F) (x)" - t
-
Álgebra Ejemplos - Mathway
-
Solve F(x)=2x^2-1yg(x)=sqrt{x} | Microsoft Math Solver
-
Let F(x) = X^2 And G(x) = 2x + 1 Be Two Real Functions. Find (f + G)(x),(f
-
Si F(x)=2x²+1 Y G(x)=x+2 Hallar F°g, G°f Y F°f | La Prof Lina M3 - YouTube
-
[PDF] Partial Differential Equations - NIT Kurukshetra
-
Cho Hàm Số Y = F( X ) Có đạo Hàm Trên R Và Có đồ Thị Như Hình Vẽ ...
-
[PDF] Differential Equations - Routledge