Solve {l}{x/m+y/n=2m}{mx-ny=m^3-mn^2} | Microsoft Math Solver
Có thể bạn quan tâm
Skip to main contentSolvePracticePlay
Topics
Pre-Algebra- Mean
- Mode
- Greatest Common Factor
- Least Common Multiple
- Order of Operations
- Fractions
- Mixed Fractions
- Prime Factorization
- Exponents
- Radicals
- Combine Like Terms
- Solve for a Variable
- Factor
- Expand
- Evaluate Fractions
- Linear Equations
- Quadratic Equations
- Inequalities
- Systems of Equations
- Matrices
- Simplify
- Evaluate
- Graphs
- Solve Equations
- Derivatives
- Integrals
- Limits
Topics
Pre-Algebra- Mean
- Mode
- Greatest Common Factor
- Least Common Multiple
- Order of Operations
- Fractions
- Mixed Fractions
- Prime Factorization
- Exponents
- Radicals
- Combine Like Terms
- Solve for a Variable
- Factor
- Expand
- Evaluate Fractions
- Linear Equations
- Quadratic Equations
- Inequalities
- Systems of Equations
- Matrices
- Simplify
- Evaluate
- Graphs
- Solve Equations
- Derivatives
- Integrals
- Limits
Similar Problems from Web Search
Solutions for the given system with fractionshttps://math.stackexchange.com/questions/887515/solutions-for-the-given-system-with-fractions Let s=x-y and t=x+y. Then the first equation becomes \frac{t-s}{t+s}+\frac{t+s}{t-s}=\frac{17}{4} which with some manipulation becomes 9t^2=25s^2, or equivalently t=\pm\frac{5}{3}s. The ... Why is this function differentiable?https://math.stackexchange.com/questions/71958/why-is-this-function-differentiable Don't be tricked by the seemingly complicated piecewise definition of the function f:\mathbb{R}\to\mathbb{R}, f(x) = \left\{ \begin{array}{lr} \frac{x^2-1}{x-1} & , x \neq 1\\ 2 & , x=1. \end{array} \right. ... Local Integrabilityhttps://math.stackexchange.com/questions/2210237/local-integrability Yes, in order to be locally integrable the integrals need to be finite. One way to see that f is locally integrable is that f(x) \geq 0, and we can use the p-test for convergence from calculus ... Continuity of a complex valued function and Cauchy Riemann equation checking.https://math.stackexchange.com/q/2108730 This is a classical example (by Looman) that satisfies the Cauchy–Riemann equations everywhere but is not analytic, or even continuous, at z = 0. Hint: For the continuity issue, show that \lim_{z\to 0}f(z)=0 ... Find the derivative of g(x)= \left\{ \begin{array}{lcc} x+e^{1-x} & x < 1 \\ 2 & x=1\\ \ln(x) &x > 1\end{array}\right.https://math.stackexchange.com/questions/2208982/find-the-derivative-of-gx-left-beginarraylcc-xe1-x-x-1-2 Notice that the function g is not continuous at x = 1, because \ln (1) = 0 \neq 2. This implies that g is not derivable at x=1, so that's why g' can't be defined there. Here you have the ... Simplest way to solve this system of equationshttps://math.stackexchange.com/questions/2168850/simplest-way-to-solve-this-system-of-equations from the second equation we get x=\frac{1}{2}(a^2-b) plugging this in the third equation we obtain y=a(\frac{1}{2}(a^2-b))-c simplifying this we get y=\frac{1}{2}(a^3-3ab-2c) inserting ...More ItemsShare
CopyCopied to clipboard\frac{1}{m}x+\frac{1}{n}y=2m,mx+\left(-n\right)y=m^{3}-mn^{2} To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.\frac{1}{m}x+\frac{1}{n}y=2m Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.\frac{1}{m}x=\left(-\frac{1}{n}\right)y+2m Subtract \frac{y}{n} from both sides of the equation.x=m\left(\left(-\frac{1}{n}\right)y+2m\right) Multiply both sides by m.x=\left(-\frac{m}{n}\right)y+2m^{2} Multiply m times 2m-\frac{y}{n}.m\left(\left(-\frac{m}{n}\right)y+2m^{2}\right)+\left(-n\right)y=m^{3}-mn^{2} Substitute \frac{m\left(-y+2mn\right)}{n} for x in the other equation, mx+\left(-n\right)y=m^{3}-mn^{2}.\left(-\frac{m^{2}}{n}\right)y+2m^{3}+\left(-n\right)y=m^{3}-mn^{2} Multiply m times \frac{m\left(-y+2mn\right)}{n}.\left(-\frac{m^{2}}{n}-n\right)y+2m^{3}=m^{3}-mn^{2} Add -\frac{m^{2}y}{n} to -ny.\left(-\frac{m^{2}}{n}-n\right)y=-m\left(m^{2}+n^{2}\right) Subtract 2m^{3} from both sides of the equation.y=mn Divide both sides by -\frac{m^{2}}{n}-n.x=\left(-\frac{m}{n}\right)mn+2m^{2} Substitute mn for y in x=\left(-\frac{m}{n}\right)y+2m^{2}. Because the resulting equation contains only one variable, you can solve for x directly.x=-m^{2}+2m^{2} Multiply -\frac{m}{n} times mn.x=m^{2} Add 2m^{2} to -m^{2}.x=m^{2},y=mn The system is now solved.\frac{1}{m}x+\frac{1}{n}y=2m,mx+\left(-n\right)y=m^{3}-mn^{2} Put the equations in standard form and then use matrices to solve the system of equations.\left(\begin{matrix}\frac{1}{m}&\frac{1}{n}\\m&-n\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2m\\m\left(m-n\right)\left(m+n\right)\end{matrix}\right) Write the equations in matrix form.inverse(\left(\begin{matrix}\frac{1}{m}&\frac{1}{n}\\m&-n\end{matrix}\right))\left(\begin{matrix}\frac{1}{m}&\frac{1}{n}\\m&-n\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{m}&\frac{1}{n}\\m&-n\end{matrix}\right))\left(\begin{matrix}2m\\m\left(m-n\right)\left(m+n\right)\end{matrix}\right) Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{m}&\frac{1}{n}\\m&-n\end{matrix}\right).\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{m}&\frac{1}{n}\\m&-n\end{matrix}\right))\left(\begin{matrix}2m\\m\left(m-n\right)\left(m+n\right)\end{matrix}\right) The product of a matrix and its inverse is the identity matrix.\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{m}&\frac{1}{n}\\m&-n\end{matrix}\right))\left(\begin{matrix}2m\\m\left(m-n\right)\left(m+n\right)\end{matrix}\right) Multiply the matrices on the left hand side of the equal sign.\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{n}{\frac{1}{m}\left(-n\right)-\frac{1}{n}m}&-\frac{\frac{1}{n}}{\frac{1}{m}\left(-n\right)-\frac{1}{n}m}\\-\frac{m}{\frac{1}{m}\left(-n\right)-\frac{1}{n}m}&\frac{1}{m\left(\frac{1}{m}\left(-n\right)-\frac{1}{n}m\right)}\end{matrix}\right)\left(\begin{matrix}2m\\m\left(m-n\right)\left(m+n\right)\end{matrix}\right) For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{mn^{2}}{m^{2}+n^{2}}&\frac{m}{m^{2}+n^{2}}\\\frac{nm^{2}}{m^{2}+n^{2}}&-\frac{n}{m^{2}+n^{2}}\end{matrix}\right)\left(\begin{matrix}2m\\m\left(m-n\right)\left(m+n\right)\end{matrix}\right) Do the arithmetic.\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{mn^{2}}{m^{2}+n^{2}}\times 2m+\frac{m}{m^{2}+n^{2}}m\left(m-n\right)\left(m+n\right)\\\frac{nm^{2}}{m^{2}+n^{2}}\times 2m+\left(-\frac{n}{m^{2}+n^{2}}\right)m\left(m-n\right)\left(m+n\right)\end{matrix}\right) Multiply the matrices.\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}m^{2}\\mn\end{matrix}\right) Do the arithmetic.x=m^{2},y=mn Extract the matrix elements x and y.\frac{1}{m}x+\frac{1}{n}y=2m,mx+\left(-n\right)y=m^{3}-mn^{2} In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.m\times \frac{1}{m}x+m\times \frac{1}{n}y=m\times 2m,\frac{1}{m}mx+\frac{1}{m}\left(-n\right)y=\frac{1}{m}\left(m^{3}-mn^{2}\right) To make \frac{x}{m} and mx equal, multiply all terms on each side of the first equation by m and all terms on each side of the second by m^{-1}.x+\frac{m}{n}y=2m^{2},x+\left(-\frac{n}{m}\right)y=\left(m-n\right)\left(m+n\right) Simplify.x-x+\frac{m}{n}y+\frac{n}{m}y=2m^{2}+n^{2}-m^{2} Subtract x+\left(-\frac{n}{m}\right)y=\left(m-n\right)\left(m+n\right) from x+\frac{m}{n}y=2m^{2} by subtracting like terms on each side of the equal sign.\frac{m}{n}y+\frac{n}{m}y=2m^{2}+n^{2}-m^{2} Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.\left(\frac{m}{n}+\frac{n}{m}\right)y=2m^{2}+n^{2}-m^{2} Add \frac{my}{n} to \frac{ny}{m}.\left(\frac{m}{n}+\frac{n}{m}\right)y=m^{2}+n^{2} Add 2m^{2} to -m^{2}+n^{2}.y=mn Divide both sides by \frac{m}{n}+\frac{n}{m}.mx+\left(-n\right)mn=m^{3}-mn^{2} Substitute mn for y in mx+\left(-n\right)y=m^{3}-mn^{2}. Because the resulting equation contains only one variable, you can solve for x directly.mx-mn^{2}=m^{3}-mn^{2} Multiply -n times mn.mx=m^{3} Add mn^{2} to both sides of the equation.x=m^{2} Divide both sides by m.x=m^{2},y=mn The system is now solved.Examples
Quadratic equation { x } ^ { 2 } - 4 x - 5 = 0Trigonometry 4 \sin \theta \cos \theta = 2 \sin \thetaLinear equation y = 3x + 4Arithmetic 699 * 533Matrix \left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]Simultaneous equation \left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.Differentiation \frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }Integration \int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d xLimits \lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}Back to topTừ khóa » X=m+n Y=m-n
-
N , Express The Value Of Log 10xy^2 In Terms Of M And N - Toppr
-
Given That Log X =m+n And Log Y =m-n,the Value Log 10x/y2 Is ...
-
N, Then How Do You Express The Value Of Log (10x/y²) In Terms ... - Quora
-
Given Log X=m+n And Log Y= M-n Then Express The Value Of Log (10/y ...
-
Qualtrics XM // The Leading Experience Management Software
-
Logarithm Rules Or Log Rules | Laws Of Logarithm - Math Only Math
-
Given That Log X= Mn And Log Y= Mn The Value Of Log 10x/y^2? - EduRev
-
Solve {l}{m(x+y)+n(x-y) - Microsoft Math Solver
-
[PDF] Neiv Zealand~ PATENTS, 1) ~NS,ANt) TRADE-MARKS. - AustLII
-
Corporate Information - SiriusXM
-
ℂ𝕚𝕟𝕚𝕖 𝔽𝕝𝕚𝕖𝕤🍿 On Instagram: “@alwaysramcharan ...
-
Levi X Sick Dying Reader. Her Words Were Wandering Aimlessly Into ...