Stokes's Law | Definition, Formula, & Facts | Britannica

Ask the Chatbot Games & Quizzes History & Society Science & Tech Biographies Animals & Nature Geography & Travel Arts & Culture ProCon Money Videos Stokes’s law Introduction References & Edit History Related Topics Britannica AI Icon Contents Science Physics Matter & Energy CITE verifiedCite While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions. Select Citation Style MLA APA Chicago Manual of Style Copy Citation Share Share Share to social media Facebook X URL https://www.britannica.com/science/Stokess-law Feedback Feedback Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login). Feedback Type Select a type (Required) Factual Correction Spelling/Grammar Correction Link Correction Additional Information Other Your Feedback Submit Feedback Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites Stokes’s law physics Ask Anything Homework Help Written by Erik Gregersen Erik Gregersen is a senior editor at Encyclopaedia Britannica, specializing in the physical sciences and technology. Before joining Britannica in 2007, he worked at the University of Chicago Press on the... Erik Gregersen Fact-checked by Britannica Editors Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree.... Britannica Editors History Britannica AI Icon Britannica AI Ask Anything Homework Help Table of Contents Table of Contents Ask Anything

Stokes’s law, mathematical equation that expresses the drag force resisting the fall of small spherical particles through a fluid medium. The law, first set forth by the British scientist Sir George G. Stokes in 1851, is derived by consideration of the forces acting on a particular particle as it sinks through a liquid column under the influence of gravity. In Stokes’s law, the drag force F acting upward in resistance to the fall is equal to 6πrηv, in which r is the radius of the sphere, η is the viscosity of the liquid, and v is the velocity of fall.

The force acting downward is equal to 4/3πr3 (d1 − d2)g, in which d1 is the density of the sphere, d2 is the density of the liquid, and g is the acceleration due to gravity. At a constant velocity of fall called the terminal velocity, the upward and downward forces are in balance. Equating the two expressions given above and solving for v therefore yields the required velocity expressed as v = 2/9(d1 − d2)gr2/η.

Key People: Sir George Gabriel Stokes, 1st Baronet (Show more) Related Topics: viscosity fluid flow (Show more) See all related content

Stokes’s law finds application in several areas, particularly with regard to the settling of sediment in fresh water and to measurements of the viscosity of fluids. Because its validity is limited to conditions in which the motion of the particle does not produce turbulence in the fluid, however, various modifications have been set forth.

Erik Gregersen

Từ khóa » G-9n