Sử Dụng Phương Pháp Tích Phân Từng Phần để Tính Tích Phân
Có thể bạn quan tâm
Mục Lục - Lý thuyết Toán 12
- Bài 1: Sự đồng biến, nghịch biến của hàm số
- Bài 2: Cực trị của hàm số
- Bài 3: Phương pháp giải một số bài toán cực trị có tham số đối với một số hàm số cơ bản
- Bài 4: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Bài 5: Đồ thị hàm số và phép tịnh tiến hệ tọa độ
- Bài 6: Đường tiệm cận của đồ thị hàm số và luyện tập
- Bài 7: Khảo sát sự biến thiên và vẽ đồ thị của hàm đa thức bậc ba
- Bài 8: Khảo sát sự biến thiên và vẽ đồ thị của hàm đa thức bậc bốn trùng phương
- Bài 9: Phương pháp giải một số bài toán liên quan đến khảo sát hàm số bậc ba, bậc bốn trùng phương
- Bài 10: Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỷ
- Bài 11: Phương pháp giải một số bài toán về hàm phân thức có tham số
- Bài 12: Phương pháp giải các bài toán tương giao đồ thị
- Bài 13: Phương pháp giải các bài toán tiếp tuyến với đồ thị và sự tiếp xúc của hai đường cong
- Bài 14: Ôn tập chương I
- Bài 1: Lũy thừa với số mũ hữu tỉ - Định nghĩa và tính chất
- Bài 2: Phương pháp giải các bài toán liên quan đến lũy thừa với số mũ hữu tỉ
- Bài 3: Lũy thừa với số mũ thực
- Bài 4: Hàm số lũy thừa
- Bài 5: Các công thức cần nhớ cho bài toán lãi kép
- Bài 6: Logarit - Định nghĩa và tính chất
- Bài 7: Phương pháp giải các bài toán về logarit
- Bài 8: Số e và logarit tự nhiên
- Bài 9: Hàm số mũ
- Bài 10: Hàm số logarit
- Bài 11: Phương trình mũ và một số phương pháp giải
- Bài 12: Phương trình logarit và một số phương pháp giải
- Bài 13: Hệ phương trình mũ và logarit
- Bài 14: Bất phương trình mũ
- Bài 15: Bất phương trình logarit
- Bài 16: Ôn tập chương 2
- Bài 1: Nguyên hàm
- Bài 2: Sử dụng phương pháp đổi biến để tìm nguyên hàm
- Bài 3: Sử dụng phương pháp nguyên hàm từng phần để tìm nguyên hàm
- Bài 4: Tích phân - Khái niệm và tính chất
- Bài 5: Tích phân các hàm số cơ bản
- Bài 6: Sử dụng phương pháp đổi biến số để tính tích phân
- Bài 7: Sử dụng phương pháp tích phân từng phần để tính tích phân
- Bài 8: Ứng dụng tích phân để tính diện tích hình phẳng
- Bài 9: Ứng dụng tích phân để tính thể tích vật thể
- Bài 10: Ôn tập chương III
- Bài 1: Số phức
- Bài 2: Căn bậc hai của số phức và phương trình bậc hai
- Bài 3: Phương pháp giải một số bài toán liên quan đến điểm biểu diễn số phức thỏa mãn điều kiện cho trước
- Bài 4: Phương pháp giải các bài toán tìm min, max liên quan đến số phức
- Bài 5: Dạng lượng giác của số phức
- Bài 1: Khái niệm về khối đa diện
- Bài 2: Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
- Bài 3: Khối đa diện đều. Phép vị tự
- Bài 4: Thể tích của khối chóp
- Bài 5: Thể tích khối hộp, khối lăng trụ
- Bài 6: Ôn tập chương Khối đa diện và thể tích
- Bài 1: Khái niệm về mặt tròn xoay – Mặt nón, mặt trụ
- Bài 2: Diện tích hình nón, thể tích khối nón
- Bài 3: Diện tích hình trụ, thể tích khối trụ
- Bài 4: Lý thuyết mặt cầu, khối cầu
- Bài 5: Mặt cầu ngoại tiếp, nội tiếp khối đa diện
- Bài 6: Ôn tập chương VI
- Bài 1: Hệ tọa độ trong không gian – Tọa độ điểm
- Bài 2: Tọa độ véc tơ
- Bài 3: Tích có hướng và ứng dụng
- Bài 4: Phương pháp giải các bài toán về tọa độ điểm và véc tơ
- Bài 5: Phương trình mặt phẳng
- Bài 6: Phương pháp giải các bài toán liên quan đến phương trình mặt phẳng
- Bài 7: Phương trình đường thẳng
- Bài 8: Phương pháp giải các bài toán về mối quan hệ giữa hai đường thẳng
- Bài 9: Phương pháp giải các bài toán về mặt phẳng và đường thẳng
- Bài 10: Phương trình mặt cầu
- Bài 11: Phương pháp giải các bài toán về mặt cầu và mặt phẳng
- Bài 12: Phương pháp giải các bài toán về mặt cầu và đường thẳng
CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ
CHƯƠNG 2: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
CHƯƠNG 3: NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG
CHƯƠNG 4: SỐ PHỨC
CHƯƠNG 5: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG
CHƯƠNG 6: MẶT CẦU, MẶT TRỤ, MẶT NÓN
CHƯƠNG 7: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
- Trang chủ
- Lý thuyết toán học
- Lý thuyết Toán 12
- CHƯƠNG 3: NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG
- Sử dụng phương pháp tích phân từng phần để tính tích phân
1. Kiến thức cần nhớ
Công thức tích phân từng phần:
Ví dụ: Tính tích phân $I = \int\limits_1^2 {\ln tdt} .$
Giải: Đặt $\left\{ \begin{array}{l}u = \ln t\\dv = dt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dt}}{t}\\v = t\end{array} \right.$.
Khi đó $I = t\ln t\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_1^2 {dt} = t\ln t\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. - t\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. = 2\ln 2 - 1.$
2. Một số bài toán thường áp dụng phương pháp tích phân từng phần
Dạng 1: Tích phân có chứa hàm số logarit.
Tính tích phân \(\int\limits_m^n {f\left( x \right)\ln \left( {ax + b} \right)dx} \) (trong đó \(f\left( x \right)\) là hàm số đa thức)
Phương pháp:
- Bước 1: Đặt \(\left\{ \begin{array}{l}u = \ln \left( {ax + b} \right)\\dv = f\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{a}{{ {ax + b} }}dx\\v = \int {f\left( x \right)dx} \end{array} \right.\)
- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right)\ln \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)
Ví dụ: Tính tích phân $I = \int\limits_1^e {x\ln x{\rm{d}}x.} $
Giải: Đặt $\left\{ \begin{array}{l}u = \ln x\\dv = xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dx}}{x}\\v = \dfrac{{{x^2}}}{2}\end{array} \right.$
Khi đó $I = \dfrac{{{x^2}\ln x}}{2}\left| \begin{array}{l}^e\\_1\end{array} \right. - \dfrac{1}{2}\int\limits_1^e x = \dfrac{{{e^2}}}{2} - \dfrac{{{x^2}}}{4}\left| \begin{array}{l}^e\\_1\end{array} \right. = \dfrac{{{e^2} + 1}}{4}$
Dạng 2: Tích phân có chứa hàm số mũ.
Tính tích phân \(\int\limits_m^n {f\left( x \right){e^{ax + b}}dx} \). (trong đó \(f\left( x \right)\) là hàm số đa thức)
Phương pháp:
- Bước 1: Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = {e^{ax + b}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \dfrac{1}{a}{e^{ax + b}}\end{array} \right.\)
- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right){e^{ax + b}}dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)
Ví dụ: Tính \(I = \int\limits_0^1 {\left( {2x + 3} \right){e^x}{\rm{d}}x} \)
Giải: Đặt $\left\{ \begin{array}{l}u = 2x + 3\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2dx\\v = {e^x}\end{array} \right.$
Khi đó $I = \left. {\left( {2x + 3} \right){e^x}} \right|_0^1 - \int\limits_0^1 {2{e^x}dx} = \left. {\left( {2x + 3} \right){e^x}} \right|_0^1 - \left. {2{e^x}} \right|_0^1 = 3e - 1.$
Dạng 3: Tích phân có chứa hàm số lượng giác và hàm đa thức.
Tính tích phân \(\int\limits_m^n {f\left( x \right)\sin \left( {ax + b} \right)dx} \) hoặc \(\int\limits_m^n {f\left( x \right)\cos \left( {ax + b} \right)dx} \). (trong đó \(f\left( x \right)\) là hàm số đa thức)
Phương pháp:
- Bước 1: Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \sin \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = - \dfrac{1}{a}\cos \left( {ax + b} \right)\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \cos \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \dfrac{1}{a}\sin \left( {ax + b} \right)\end{array} \right.\)
- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right)\sin \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \) hoặc \(\int\limits_m^n {f\left( x \right)\cos \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)
Ví dụ: Tính tích phân $I = \int\limits_0^{\dfrac{\pi }{4}} {x\sin 2x{\rm{d}}x} $
Giải: Đặt $\left\{ \begin{array}{l}u = x\\dv = \sin 2xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \dfrac{{\cos 2x}}{2}\end{array} \right..$
Khi đó $I = - \dfrac{{x\cos 2x}}{2}\left| {_{\scriptstyle\atop\scriptstyle0}^{\dfrac{\pi }{4}}} \right. + \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {\cos 2xdx} = - \dfrac{{x\cos 2x}}{2}\left| {_{\scriptstyle\atop\scriptstyle0}^{\dfrac{\pi }{4}}} \right. + \dfrac{{\sin 2x}}{4}\left| {_{\scriptstyle\atop\scriptstyle0}^{\dfrac{\pi }{4}}} \right. = \dfrac{1}{4}.$
Dạng 4: Tích phân có chứa hàm số lượng giác và hàm số mũ.
Tính tích phân \(\int\limits_m^n {{e^{ax + b}}\sin \left( {cx + d} \right)dx} \) hoặc \(\int\limits_m^n {{e^{ax + b}}\cos \left( {cx + d} \right)dx} \).
- Bước 1: Đặt \(\left\{ \begin{array}{l}u = {e^{ax + b}}\\dv = \sin \left( {cx + d} \right)dx\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}u = {e^{ax + b}}\\dv = \cos \left( {cx + d} \right)dx\end{array} \right.\)
- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {udv} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)
Ví dụ: Tính $K = \int\limits_0^\pi {{e^x}\cos 2x{\rm{d}}x} $
Giải: Đặt $\left\{ \begin{array}{l}u = \cos 2x\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = - 2\sin 2xdx\\v = {e^x}\end{array} \right.$
Suy ra $K = \left( {{e^x}\cos 2x} \right)\left| {\begin{array}{*{20}{c}}{^\pi }\\{_0}\end{array}} \right. + 2\int\limits_0^\pi {{e^x}\sin 2xdx} = {e^\pi } - 1 + 2M$
Tính $M = \int\limits_0^\pi {{e^x}\sin 2xdx} $
Ta đặt $\left\{ \begin{array}{l}{u_1} = \sin 2x\\d{v_1} = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}d{u_1} = 2\cos 2x\\{v_1} = {e^x}\end{array} \right.$
Suy ra $M = \left( {{e^x}\sin 2x} \right)\left| {\begin{array}{*{20}{c}}{^\pi }\\{_0}\end{array}} \right. - 2\int\limits_0^\pi {{e^x}\cos 2x} = - 2K$
Khi đó $K = {e^\pi } - 1 + 2\left( { - 2K} \right) \Leftrightarrow 5K = {e^\pi } - 1 \Leftrightarrow K = \dfrac{{{e^\pi } - 1}}{5}$
Trang trước Mục Lục Trang sauCó thể bạn quan tâm:
- Ôn tập chương III
- Lý thuyết Toán 12
- Ôn tập chương 2: Phân thức đại số
- Phép cộng và phép nhân
- Ôn tập chương I
Tài liệu
Bài thi mẫu đánh giá năng lực của Đại học Quốc gia TP HCM
Sử dụng liên hợp hằng số giải phương trình chứa căn (liên hợp 2) – Lương Tuấn Đức
Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba) – Lương Tuấn Đức
Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc hai) – Lương Tuấn Đức
Sử dụng hai ẩn phụ đồng bậc giải phương trình chứa căn (ẩn phụ 4)- Lương Tuấn Đức
TopTừ khóa » Nguyên Hàm Chứa Ln
-
Nguyên Hàm Ln X Là Gì? Tính Nguyên Hàm Ln, Cách Giải Bài Tập
-
Phương Pháp Và Bài Tập Tính Nguyên Hàm Từng Phần
-
Nguyên Hàm Lnx Là Gì ? Công Thức Tính Nguyên Hàm Ln Và Bài Tập ...
-
Công Thức Nguyên Hàm Từng Phần đầy đủ Nhất - TopLoigiai
-
Phương Pháp Nguyên Hàm Từng Phần, Trắc Nghiệm Toán Học Lớp 12
-
Bảng Các Công Thức Nguyên Hàm Ln(U)
-
Phương Pháp Nguyên Hàm Từng Phần để Tính Tích Phân Bất định
-
Công Thức Nguyên Hàm, Bảng Nguyên Hàm đầy đủ & Mở Rộng
-
[PDF] Nguyên Hàm, Tích Phân
-
Tính Nguyên Hàm Của Lnx Dx Bằng
-
Công Thức Nguyên Hàm Lnx Và Cách Giải Các Dạng Bài Tập
-
Nguyên Hàm Ln X Là Gì?
-
Cách Tìm Nguyên Hàm Của Hàm Số Mũ, Hàm Số Logarit Cực Hay