Tập Nghiệm Của Phương Trình \(\log \left( {{x^2} - 1} \right)\) - Hoc247
Có thể bạn quan tâm
- Gọi X0 Là Nghiệm Của Phương Trình Sinx Cosx+2(sinx+cosx)=2
- Gọi X0 Là Nghiệm Của Phương Trình Sin X Trừ Cos X + 4 Sin 2x = 1 Thì Sin 2 X 0 Bằng Bao Nhiêu
- Gọi X0 Là Nghiệm Dương Nhỏ Nhất Của Cos2x + Căn 3 Sin2x + Căn 3 Sin X Trừ Cos X = 2
- Gọi X0 Là Nghiệm Dương Nhỏ Nhất Của Phương Trình
- Gọi X0 Là Nghiệm Dương Nhỏ Nhất Của Phương Trình 2cos2x-1=0
- Câu hỏi:
Tập nghiệm của phương trình \(\log \left( {{x^2} - 1} \right) = \log \left( {2x - 1} \right)\)
- A. {2}
- B. {0}
- C. {0;2}
- D. {3}
Lời giải tham khảo:
Đáp án đúng: A
Điều kiện \(\left\{ \begin{array}{l} 2x - 1 > 0\\{x^2} - 1 > 0 \end{array} \right. \Leftrightarrow x > 1\)
Phương trình ban đầu \( \Rightarrow {x^2} - 1 = 2x - 1 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2\left( {tmdk} \right) \end{array} \right. \Leftrightarrow x = 2\).
Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\).
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 268518
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Võ Thị Sáu lần 2
50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Diện tích mặt cầu (S) tâm I đường kính bằng a là
- Nghiệm của phương trình \({{2}^{2x+1}}=32\) bằng
- Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên như sau: Hàm số đạt cực đại tại điểm
- Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{3}}=-7;\,\,{{u}_{4}}=8\). Hãy chọn mệnh đề đúng
- Cho tập hợp M có 10 phần tử. Số tập con gồm 2 phần tử của M là
- Phần ảo của số phức z=2-3i là giá trị nào
- Cho hàm số y=f(x) có bảng biến thiên như hình sau Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
- Cho khối lăng trụ có đáy là hình vuông cạnh a và chiều cao bằng 2a. Thể tích của khối lăng trụ đã cho bằng
- Số phức \(z=a+bi\,\,\left( a,b\in \mathbb{R} \right)\) có điểm biểu diễn như hình vẽ bên dưới. Tìm a và b
- Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R},f\left( -1 \right)=-2\) và \(f\left( 3 \right)=2\). Tính \(I=\int\limits_{-1}^{3}{{f}'\left( x \right)dx}\).
- Tìm số phức liên hợp của số phức \(z = \left( {2 - i} \right)\left( {1 + 2i} \right)\)
- Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của hàm số \(f\left( x \right)=\frac{x+1}{x-1}\) trên \(\left[ -3;-1 \right]\). Khi đó M.m bằng
- Đồ thị hình vẽ bên là đồ thị của hàm số nào?
- Hs nào dưới đây đồng biến trên tập \(\mathbb{R}\)
- Rút gọn biểu thức \(P={{x}^{\frac{1}{5}}}.\sqrt[3]{x}\) với x>0.
- Tính tích phân \(\int\limits_2^6 {\frac{1}{x}dx} \) bằng.
- Cho \(I=\int\limits_{0}^{2}{f(x)d}x=3.\) Khi đó \(J=\int\limits_{0}^{2}{\left[ 4f\left( x \right)-3 \right]dx}\) bằng:
- Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên đoạn \(\left[ -1;3 \right]\) và có đồ thị là đường cong trong hình vẽ bên. Tập hợp T tất cả các giá trị thực của tham số m để phương trình \(f\left( x \right)=m\) có 3 nghiệm phân biệt thuộc đoạn \(\left[ -1;3 \right]\) là:
- Một khối trụ có thể tích bằng \(6\pi \). Nếu giữ nguyên chiều cao và tăng bán kính đáy của khối trụ đó gấp 3 lần thì thể tích của khối trụ mới bằng bao nhiêu?
- Họ nguyên hàm của hàm số \(f\left( x \right) = x + \sin 2x\) là.
- Đạo hàm của hàm số \(y = \log x\) là
- Gọi V là thể tích khối lập phương ABCD.A'B'C'D', V' là thể tích khối tứ diện A'.ABD. Hệ thức nào dưới đây là đúng.
- Trong không gian hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-5 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=9\). Bán kính R của (S) là
- Nghiệm của bất phương trình \({\log _2}\left( {3{\rm{x}} - 1} \right) > 3\) là
- Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \(\overrightarrow{a}=\left( 2;1;0 \right)\) và \(\overrightarrow{b}=\left( -1;0;-2 \right)\). Khi đó \(\cos \left( \overrightarrow{a},\overrightarrow{b} \right)\) bằng
- Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{y}{-3}=\frac{z-5}{-1}\) và mặt phẳng \(\left( P \right):3x-3y+2z+6=0\). Mệnh đề nào dưới đây đúng?
- Tập nghiệm của phương trình \(\log \left( {{x^2} - 1} \right) = \log \left( {2x - 1} \right)\)
- Trong không gian Oxyz, cho điểm \(A\left( 1\,;\,2\,;\,3 \right)\) và đường thẳng \(d:\frac{x-3}{2}=\frac{y-1}{1}=\frac{z+7}{-2}\). Đường thẳng đi qua A và song song với đường thẳng d có phương trình là:
- Cho hình lập phương ABCD.A'B'C'D' (hình vẽ bên dưới). Góc giữa hai đường thẳng AC và A'D bằng
- Trong không gian với hệ tọa độ Oxyz, phươg trình nào dưới đây là phương trình mặt cầu có tâm \(I\left( 1;2;-1 \right)\)
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hai mặt \(\left( SAB \right);\left( SAD \right)\) cùng vuông góc với mặt phẳng \(\left( ABCD \right)\); góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\) bằng \({{60}^{0}}\). Tính theo a thể tích của khối chóp S.ABCD.
- Một vật chuyển động với vận tốc \(v\left( t \right)\left( m/s \right)\) có gia tốc \(a\left( t \right)=3{{t}^{2}}+t\left( m/{{s}^{2}} \right)\). Vận tốc ban đầu của vật là \(2\left( m/s \right)\). Hỏi vận tốc của vật sau 2s
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)=\left( {{e}^{x}}+1 \right)\left( {{e}^{x}}-12 \right)\left( x+1 \right){{\left( x-1 \right)}^{2}}\) trên \(\mathbb{R}\). Hỏi hàm số \(y=f\left( x \right)\) có bao nhiêu điểm cực trị?
- Đồ thị \(\left( C \right)\) của hàm số \(y=\frac{\left( a+1 \right)x+2}{x-b+1}\) nhận gốc tọa độ O làm tâm đối xứng thì tổng a+b là
- Câu 35. Một nhóm học sinh gồm 6 bạn nam và 4 bạn nữ đứng ngẫu nhiên thành 1 hàng. Xác suất để có đúng 2 trong 4 bạn nữ đứng cạnh nhau là
- Tìm số phức z thỏa mãn \(z+2-3i=2\overline{z}.\)
- Tìm giá trị thực của tham số m để phương trình \({{9}^{x}}-{{2.3}^{x+1}}+m=0\) có hai nghiệm thực \({{x}_{1}}, {{x}_{2}}\) thỏa mãn \({{x}_{1}}+{{x}_{2}}=1\).
- Cho hình chóp tứ giác S.ABCD có đáy là hình thang vuông tại A, D, AB=AD=a, CD=2a. Cạnh bên SD vuông góc với đáy \(\left( ABCD \right)\) và SD=a. Tính khoảng cách từ A đến \(\left( SBC \right)\).
- Tất cả các giá trị của tham số m để hàm số \(y=\left( m-1 \right){{x}^{4}}\) đạt cực đại tại x=0 là:
- Gọi S là diện tích hình phẳng giới hạn bởi parabol \(\left( P \right),\) tiếp tuyến với \(\left( P \right)\) tại điểm \(A\left( 1;-1 \right)\) và đường thẳng x=2 (như hình vẽ). Tính S.
- Cho hai số phức \({{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=2,\left| {{z}_{2}} \right|=\sqrt{3}\). Gọi M, N lần lượt là điểm biểu diễn cho \({{z}_{1}}\) và \(i{{z}_{2}}\). Biết \(\widehat{MON}={{30}^{0}}\). Tính \(S=\left| z_{1}^{2}+4z_{2}^{2} \right|\)
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x+y+z-3=0\) và đường thẳng \(d:\frac{x}{1}=\frac{y+1}{2}=\frac{z-2}{-1}.\) Hình chiếu vuông góc của d trên \(\left( P \right)\) có phương trình là
- Cho hàm số Tính \(I = 2\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx} + 3\int\limits_0^1 {f\left( {3 - 2x} \right)dx} \)
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(f\left( 1 \right)=1\). Đồ thị hàm số \(y={f}'\left( x \right)\) như hình bên. Có bao nhiêu số nguyên dương a để hàm số \(y=\left| 4f\left( \sin x \right)+\cos 2x-a \right|\) nghịch biến trên \(\left( 0;\frac{\pi }{2} \right)\)?
- Có một khối gỗ là khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(AB=30\text{ cm}, BC=40\text{ cm}, CA=50\text{ cm}\) và chiều cao \(A{A}'=100\text{ cm}\). Từ khối gỗ này người ta tiện để thu được một khối trụ có cùng chiều cao với khối gỗ ban đầu. Thể tích lớn nhất của khối trụ gần nhất với giá trị nào dưới đây?
- Có bao nhiêu cặp số nguyên \(\left( x;y \right)\) thỏa mãn \(0\le x\le 3000\) và \(3\left( {{9}^{y}}+2y \right)=x+{{\log }_{3}}{{\left( x+1 \right)}^{3}}-2\)?
- Cho hàm số y=f(x) có đạo hàm trên \(\left[ -4\ ;\ 4 \right]\), có các điểm cực trị trên \(\left( -4\ ;\ 4 \right)\) là -3; \(-\frac{4}{3}\); 0; 2 và có đồ thị như hình vẽ. Đặt hàm số \(y=g(x)=f({{x}^{3}}+3x)+m\) với m là tham số. Gọi \({{m}_{1}}\) là giá trị của m để \(\underset{\left[ 0\ ;\ 1 \right]}{\mathop{\max }}\,g(x)=4, {{m}_{2}}\) là giá trị của m để \(\underset{\left[ -1\ ;\ 0 \right]}{\mathop{\min }}\,g(x)=-2\). Giá trị của \({{m}_{1}}+{{m}_{2}}\) bằng.
- Có bao nhiêu số nguyên dươg y để tập nghiệm của bất phươg trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y
- Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \right)+{{\left( {f}'\left( t \right) \right)}^{2}} \right]}dt={{\left( f\left( x \right) \right)}^{2}}-2018\). Tính \(f\left( 1 \right)\)
- Trong hệ tọa độ \(\text{O}xyz\), cho điểm \(A\left( 2;1;3 \right)\), mặt phẳng \((\alpha ):2x+2y-z-3=0\) và mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x-4y-10z+2=0\). Gọi \(\Delta \) là đường thẳng đi qua A, nằm trong mặt phẳng \((\alpha )\) và cắt (S) tại hai điểm M,N. Độ dài đoạn MN nhỏ nhất là:
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 4
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 1 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Quá trình văn học và phong cách văn học
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Tây Tiến
Ai đã đặt tên cho dòng sông
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Gọi X0 Là Nghiệm Của Phương Trình Log2(x+1)=1+log2(x−1). Khi đó Mệnh đề Nào Sau đây đúng
-
Phương Trình Log2x+log2(x-1)=1 Có Tập Nghiệm Là:
-
Tập Nghiệm Của Phương Trình \(\log _{2}(x-1)=\log - Hoc247
-
Cho Phương Trình (log _2)[ (((log )_((1)(8)))( ((x^3)) ) + ((log
-
Nghiệm Của Phương Trình Log2(1−x)=2 - Log 2 1
-
Nghiệm Của Phương Trình Log2 (x+9)=5 Là A. X=41...
-
Tìm Tập Nghiệm S Của Phương Trình Log 2 (x^2 - Vietjack.online
-
đề Thi Minh Họa Về Phương Trình, Bất Phương Trình Logarit Các Năm ...
-
Bài Tập Chủ đề Mũ Và Lôgarit Vận Dụng Cao (có Lời Giải Chi Tiết)
-
Gọi MO Là Giá Trị Nhỏ Nhất để Bất Phương Trình 1+log2(2−x)
-
Gọi (x0;y0) Là Nghiệm Của Hệ Log X Y = 2 Và Log X+1 (y+23) = 3...
-
Tìm Số Nghiệm Của Phương Trình Log2 X + Log2 (x -1) = 2
-
[LỜI GIẢI] Nghiệm Của Phương Trình Log 2( X + 1 ) + 1 = Log 2( 3x - 1 ) Là
-
Cách Bấm Máy Tính Giải Phương Trình Logarit Trắc Nghiệm Cực Nhanh
-
[PDF] 1. Y X X = - + ( ) Y F X = 1 1 Y = - . 1 1 X = - . ). +∞ D. ( ; 0).