Tiệm Cận đứng Của đồ Thị Hàm Số - Toán Thầy Định

Tiệm cận đứng của đồ thị hàm số

Tiệm cận đứng của đồ thị hàm số là gì? Bài viết dưới đây hướng dẫn các em học sinh cách tìm đường tιệm cận đứng của đồ thị một hàm số. Chúng ta cùng theo dõi nhé!

Content

  • 1 ĐƯỜNG TIỆM CẬN ĐỨNG CỦA ĐỒ THỊ HÀM SỐ
  • 2 TÌM TIỆM CẬN ĐỨNG CỦA ĐỒ THỊ HÀM SỐ
  • 3 CÔNG THỨC TIỆM CẬN ĐỨNG CỦA HÀM SỐ PHÂN TUYẾN TÍNH

ĐƯỜNG TIỆM CẬN ĐỨNG CỦA ĐỒ THỊ HÀM SỐ

Cho hàm số y=f(x) xác định  trên K\{α}. Nếu giới hạn của hàm số f(x) khi x tiến đến “bên trái” hoặc x tiến đến “bên phải” điểm α bằng vô cực (âm vô cực hoặc dương vô cực). Thì đồ thị hàm số y=f(x) có đường tιệm cận đứng là x=α.

Theo cách hiểu như vậy các em cần lưu ý để x có thể tiến đến α thì f(x) phải xác định trên lân cận trái (hoặc phải) của điểm α.

Chẳng hạn như f(x) có tập xác định là (1;3) và không xác định tại x=5 thì x không thể tiến tới giá trị 5 được. Vì vậy cũng không thể có tιệm cận đứng x=5.

tiệm cận đứng của đồ thị hàm số

TÌM TIỆM CẬN ĐỨNG CỦA ĐỒ THỊ HÀM SỐ

Tìm tiệm đứng bao gồm các bước sau:

Bước 1. Tìm tập xác định của hàm số.

Bước 2. Tìm những điểm mà hàm số không xác định nhưng có lân cận trái hoặc lân cận phải của điểm đó nằm trong tập xác định.

Bước 3. Tính các giới hạn một bên của hàm số tại các điểm ở bước 2 và kết luận theo định nghĩa nêu trên.

Bộ đề thi Online các dạng có giải chi tiết: Tiệm cận đứng

Ví dụ:

Tìm tiệm cận đứng của hàm số sau:

đường tiệm cận đứng

Lời giải:

cách tính tiệm cận đứng

CÔNG THỨC TIỆM CẬN ĐỨNG CỦA HÀM SỐ PHÂN TUYẾN TÍNH

Cách tìm tιệm cận đứng của hàm phân tuyến tính y=(ax+b)/(cx+d) (ad−bc≠0, c≠0) có thể được tính nhanh thông qua công thức. Cụ thể hàm số phân tuyến tính có một đường tιệm cận đứng duy nhất là x=−d/c.

Cách tìm tiệm cận đứng

Ví dụ:

Hàm số y=(x−2)/(x+3) có duy nhất một đường tιệm cận đứng là x=−3.

Chúc các em thành công!

>>> Xem thêm:Đường tiệm cận của đồ thị hàm số

>>> Xem thêm:Đường tiệm cận ngang của đồ thị hàm số

»»»Xem thêm: Tìm m để hàm số có tiệm cận ngang tiệm cận đứng

Hàm số -
  • Phương trình tiếp tuyến của đồ thị hàm số

  • Đồ thị hàm số bậc 4 và một số dạng toán thường gặp

  • Bài tập trắc nghiệm cực trị của hàm số

  • Tiệm cận ngang của đồ thị hàm số

  • Tiệm cận của đồ thị hàm số lớp 12

  • Hàm số đồng biến trên R hàm số nghịch biến trên R

  • Ba phương pháp xét dấu đạo hàm tìm cực trị của hàm số

Từ khóa » Tiệm Cận đứng Công Thức