Tiệm Cận Ngang Của đồ Thị Hàm Số \(y=\dfrac{3x+2}{x-1}\) Là đường ...

YOMEDIA NONE Tiệm cận ngang của đồ thị hàm số \(y=\dfrac{3x+2}{x-1}\) là đường thẳng ADMICRO
  • Câu hỏi:

    Tiệm cận ngang của đồ thị hàm số \(y=\dfrac{3x+2}{x-1}\) là đường thẳng

    • A. y = 3
    • B. y = 1
    • C. x = 3
    • D. x = 1

    Lời giải tham khảo:

    Đáp án đúng: A

    Ta có: \(\underset{x\to +\infty }{\mathop{\lim }}\,y=3;\text{ }\underset{x\to -\infty }{\mathop{\lim }}\,y=3\) nên tiệm cận ngang của đồ thị hàm số là đường thẳng y=3.

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 269259

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Tân Hiệp lần 2

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Có bao nhiêu cách xếp 4 học sinh thành một hàng dọc?
  • Cho cấp số nhân \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=-2\) và \({{u}_{2}}=6\). Giá trị của \({{u}_{3}}\) bằng
  • Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau: Hàm số \(y=f\left( x \right)\) nghịch biến trên khoảng nào, trong các khoảng dưới đây?
  • Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau: ​ Hàm số \(y=f\left( x \right)\) có bao nhiêu điểm cực trị ?
  • Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=x\left( x-1 \right){{\left( x+2 \right)}^{3}},\forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là
  • Tiệm cận ngang của đồ thị hàm số \(y=\dfrac{3x+2}{x-1}\) là đường thẳng
  • Câu 7: Đồ thị của hàm số nào sau đây có dạng như đường cong trong hình bên dưới?
  • Số giao điểm của đồ thị của hàm số \(y = {x^4} + 4{x^2} - 3\) với trục hoành là
  • Với a là số thực dương tùy ý, \({{\log }_{2}}\frac{4}{a}\) bằng
  • Đạo hàm của hàm số \(y = {3^x}\) là
  • Với a là số thực dương tùy ý, \(\sqrt[3]{{{a}^{2}}}\) bằng
  • Nghiệm của phương trình \({{3}^{4x-6}}=9\) là
  • Nghiệm của phương trình \(\ln \left( 7x \right)=7\) là
  • Cho hàm số \(f\left( x \right)=\frac{{{x}^{3}}+2x}{x}\). Trong các khẳng định sau, khẳng định nào đúng?
  • Cho hàm số \(f\left( x \right)=\sin 4x\). Trong các khẳng định sau, khẳng định nào đúng?
  • Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_{1}^{2}{f\left( x \right)}\text{d}x=1\) và \(\int\limits_{1}^{4}{f\left( t \right)}\text{d}t=-3\). Tính tích phân \(I=\int\limits_{2}^{4}{f\left( u \right)}\text{d}u\).
  • Với m là tham số thực, ta có \(\int\limits_{1}^{2}{\text{(}2mx+1)\text{d}x}=4.\) Khi đó m thuộc tập hợp nào sau đây?
  • Số phức liên hợp của số phức \(z=i\left( 1+3i \right)\) là
  • Cho hai số phức \({{z}_{1}}=5-6i\) và \({{z}_{2}}=2+3i\). Số phức \(3{{z}_{1}}-4{{z}_{2}}\) bằng
  • Cho hai số phức \({{z}_{1}}=1+i\) và \({{z}_{2}}=2+i\). Trên mặt phẳng Oxy, điểm biểu diễn số phức \({{z}_{1}}+2{{z}_{2}}\) có toạ độ là:
  • Cho khối chóp S.ABC, có SA vuông góc với đáy, đáy là tam giác vuông tại B, SA=2a, AB=3a, BC=4a. Thể tích khối chóp đã cho bằng
  • Cho khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{3}\). Tính thể tích khối lăng trụ đó theo a.
  • Diện tích xung quanh của hình trụ có bán kính đáy R, chiều cao h là
  • Cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và AC=3. Thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC là
  • Trong không gian Oxyz, cho hai điểm \(A\left( 3;4;2 \right),\text{ }B\left( -1;-2;2 \right)\) và \(G\left( 1;1;3 \right)\) là trọng tâm của tam giác ABC. Tọa độ điểm C là?
  • Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+4z+5=0\). Tọa độ tâm I và bán kính R của \(\left( S \right)\) là
  • Trong không gian \(Oxyz\), điểm nào sau đây thuộc trục \(Oz\)?
  • Trong không gian Oxyz, vectơ nào dưới đây là một vectơ chỉ phươg của đường thẳng đi qua gốc tọa độ O và điểm \(M\
  • Chọn ngẫu nhiên một số trong 18 số nguyên dương đầu tiên. Xác suất để chọn được số lẻ bằng
  • Hàm số nào dưới đây nghịch biến \(\mathbb{R}\)?
  • Giá trị nhỏ nhất của hàm số \(f\left( x \right)=-{{x}^{4}}+2{{x}^{2}}\) trên đoạn \(\left[ -2;2 \right]\).
  • Tập nghiệm của bất phương trình \({{\log }_{\frac{1}{2}}}x\le {{\log }_{\frac{1}{2}}}\left( 2x-1 \right)\) là
  • Nếu \(\int\limits_{0}^{\frac{\pi }{3}}{\left[ \sin x-3f\left( x \right) \right]}\text{d}x=6\) thì \(\int\limits_{0}^{\frac{\pi }{3}}{f\left( x \right)}\text{d}x\) bằng
  • Cho số phức z=5-3i. Môđun của số phức \(\left( 1-2i \right)\left( \overline{z}-1 \right)\) bằng
  • Cho khối lăng trụ đứng \(ABC.{A}{B}{C}\) có \({B}B=a\), đáy ABC là tam giác vuôg cân tại B và \(AC=a\sqrt{3}\).
  • Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên tạo với đáy một góc \(60{}^\circ \). Khoảng cách từ S đến mặt phẳng \(\left( ABCD \right)\) bằng
  • Trong khôg gian với hệ tọa độ Oxyz, mặt cầu có tâm \(I\left( -1;\,\,2;\,\,0 \right)\) và đi qua điểm \(M\left( 2;6;0 \right)\) c
  • Trong không gian Oxyz, đường thẳg đi qua hai điểm \(A\left( 2;\,3;\,-1 \right),B\left( 1;\,2;\,4 \right)\) có phương trình tham số l
  • Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh \(a\sqrt{3}, \widehat{BAD}=60{}^\circ \), SA vuông góc với mặt phẳng đáy, SA=3a. Khoảng cách giữa hai đường thẳng SO và AD bằng
  • Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(xf\left( {{x}^{2}} \right)-f\left( 2x \right)=2{{x}^{3}}+2x,\,\,\,\forall x\in \mathbb{R}\). Tính giá trị \(I=\int\limits_{1}^{2}{f\left( x \right)\text{d}x}\).
  • Tìm tất cả các giá trị thực của tham số m để phương trình \(\log _{2}^{2}x+2{{\log }_{2}}x+m=0\) có nghiệm \(x\in \left( 0\,;\,1 \right)\).
  • Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Gọi S là tích các chữ số được chọn. Xác suất để S>0 và chia hết cho 6 bằng
  • Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y=\frac{-mx+3m+4}{x-m}\) nghịch biến trên khoảng \(\left( 2\,;\,+\infty \right)\).
  • Tìm tất cả các giá trị thực của tham số m để hàm số \(y=m{{x}^{3}}-({{m}^{2}}+1){{x}^{2}}+2x-3\) đạt cực tiểu tại điểm x=1.
  • Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có đường chéo bằng \(a\sqrt{2}\), cạnh SA có độ dài bằng 2a và vuông góc với mặt phẳng đáy. Tính đường kính mặt cầu ngoại tiếp hình chóp S.ABCD?
  • Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ bên. Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \(f\left( {{x}^{3}}-3{{x}^{2}}+m \right)-4=0\) có nghiệm thuộc đoạn \(\left[ -1;\,2 \right]\)?
  • Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, \(\widehat{SAB}=\widehat{SCB}=90{}^\circ \), góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SCB \right)\) bằng \(60{}^\circ \). Thể tích của khối chóp S.ABC bằng
  • Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y={f}'\left( x \right)\) như hình bên. Đặt \(g\left( x \right)=2f\left( x \right)+{{x}^{2}}+3\). Khẳng định nào sau đây là đúng?
  • Cho phương trình \({{\left( \sqrt{3} \right)}^{3{{x}^{2}}-3mx+4}}-{{\left( \sqrt{3} \right)}^{2{{x}^{2}}-mx+3m}}=-{{x}^{2}}+2mx+3m-4 \left( 1 \right)\). Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc khoảng \(\left( 0;2020 \right)\) sao cho phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt. Số phần tử của tập S là
  • Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới. Tích tất cả các giá trị nguyên của tham số m để bất phương trình \({{36.12}^{f\left( x \right)}}+\left( {{m}^{2}}-5m \right){{.4}^{f\left( x \right)}}\le \left( {{f}^{2}}\left( x \right)-4 \right){{.36}^{f\left( x \right)}}\) nghiệm đúng với mọi số thực x là
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 9 Lớp 12 Deserts

Tiếng Anh 12 mới Unit 4

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Ôn tập Hóa học 12 Chương 4

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 1 - Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 3 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG Tiếng Anh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Quá trình văn học và phong cách văn học

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Tiệm Cận Ngang Của đồ Thị Hàm Số Y Bằng 3 X Cộng 2 Trên X Trừ 1 Là