Tìm Cực Trị Của Hàm Số Dựa Vào đồ Thị Cực Hay, Có Lời Giải

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)
  • Giảm giá 50% sách VietJack đánh giá năng lực các trường trên Shopee Mall
Trang trước Trang sau

Bài viết Tìm cực trị của hàm số dựa vào đồ thị với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm cực trị của hàm số dựa vào đồ thị.

  • Cách giải bài tập Tìm cực trị của hàm số dựa vào đồ thị
  • Ví dụ minh họa Tìm cực trị của hàm số dựa vào đồ thị
  • Bài tập trắc nghiệm Tìm cực trị của hàm số dựa vào đồ thị
  • Bài tập tự luyện Tìm cực trị của hàm số dựa vào đồ thị

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài giảng: Các dạng bài tìm cực trị của hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải

- Bước 1: Lập bảng biến của hàm số y = f(x) dựa vào đồ thị hàm y = f'(x)

Nếu đồ thị hàm số y = f'(x) nằm bên dưới trục hoành thì f'(x) mang dấu âm

Nếu đồ thị hàm số y = f'(x) nằm bên trên trục hoành thì f'(x) mang dấu dương

- Bước 2: Dựa vào bảng biến thiên để kết luận về điểm cực trị của hàm số

Hàm số y = f(x) có đạo hàm đổi dấu từ âm sang dương tại x = x0 thì hàm số đạt cực tiểu tại x = x0

Hàm số y = f(x) có đạo hàm đổi dấu từ dương sang âm tại x = x0 thì hàm số đạt cực đại tại x = x0

Chú ý: Nếu hàm số y = f'(x) cắt trục hoành tại x0 thì f'(x) đổi dấu khi qua x0

Nếu hàm số y = f'(x) tiếp xúc với trục hoành tại x0 thì f'(x) không đổi dấu khi qua x0

B. Ví dụ minh họa

Ví dụ 1: Cho hàm số y = f(x) xác định và có đạo hàm f'(x). Biết rằng hình vẽ bên là đồ thị của hàm số y = f'(x). Khẳng định nào sau đây là đúng về cực trị của hàm số y = f(x).

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Lời giải

Chọn D

Từ đồ thị của hàm số y = f'(x), ta suy ra BBT:

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Vậy hàm số y = f(x) đạt cực tiểu tại x = -2.

Ví dụ 2: Cho hàm số y = f(x) xác định và có đạo hàm f'(x). Đồ thị của hàm số g = f'(x) có đồ thị

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Điểm cực đại của hàm số là

A. x = 4.

B. x = 3.

C. x = 1.

D. x = 2.

Lời giải

Chọn D

Từ đồ thị của hàm số g = f'(x), ta suy ra BBT:

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Dựa vào BBT ta thấy hàm số đã cho đạt cực đại tại x = 2.

Ví dụ 3: Cho hàm số y = f(x) có có đồ thị của hàm số y = f'(x) như hình vẽ bên.

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Hàm số y = f(x) có bao nhiêu điểm cực trị

A. 3.

B. 2.

C. 1.

D. 4.

Lời giải

Chọn D

Bảng biến thiên:

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Suy ra hàm số có 4 điểm cực trị.

C. Bài tập trắc nghiệm

Bài 1: Cho hàm số y = f(x) có đạo hàm trên R. Hàm số y = f'(x) có đồ thị như hình vẽ bên

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Giá trị cực đại của hàm số đã cho bằng

A. f(0).

B. f(1).

C. f(2).

D. f(-1).

Lời giải:

Chọn D

Dựa vào đồ thị hàm số, hàm số đã cho đạt cực đại tại x = -1 và đạt cực tiểu tại x = 1.

Do đó giá trị cực đại của hàm số đã cho là f(-1).

Bài 2: Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) như hình vẽ:

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Đồ thị hàm số y = f(x) có mấy điểm cực trị?

A. 3.

B. 1.

C. 2.

D. 0.

Lời giải::

Chọn B

Ta thấy f'(x) chỉ đổi dấu khi đi qua x = -1 nên đồ thị hàm số có duy nhất 1 điểm cực trị

Bài 3: Cho hàm số y = f(x) xác định trên R và có đồ thị hàm số y = f'(x) là đường cong trong hình dưới.

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Mệnh đề nào dưới đây đúng?

A. Hàm số y = f(x) đạt cực tiểu tại x = 2 và x = 0 .

B. Hàm số y = f(x) có 4 cực trị.

C. Hàm số y = f(x) đạt cực tiểu tại x = -1.

D. Hàm số y = f(x) đạt cực đại tại x = -1.

Lời giải:

Chọn C

Giá trị của hàm số y = f'(x) đổi dấu từ âm sang dương khi qua x = -1 nên hàm số đạt cực tiểu tại x = -1

Bài 4: Hàm số y = f(x) có đạo hàm f'(x) trên khoảng K như hình vẽ bên dưới.

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Hỏi hàm số f(x) có bao nhiêu điểm cực trị?

A. 0.

B. 1.

C. 2.

D. 4.

Lời giải:

Chọn B

Đồ thị hàm số f'(x) cắt trục hoành tại 1 điểm duy nhất (không tính tiếp xúc) có nghĩa là đạo hàm chỉ đổi dấu một lần nên hàm số có 1 điểm cực trị.

Bài 5: Hàm số y = f(x) liên tục trên khoảng R, biết đồ thị của hàm số y = f'(x) trên Knhư hình vẽ bên.

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Tìm số cực trị của hàm số y = f(x) trên R.

A. 1.

B. 2.

C. 3.

D. 4.

Lời giải::

Chọn B

Ta thấy đồ thị hàm số f'(x) cắt trục hoành tại 2 điểm nên đạo hàm đổi dấu tại đây và tiếp xúc với trục hoành tại x = 0 nên đạo hàm không đổi dấu. Do đó hàm số y = f(x) có 2 điểm cực trị.

Bài 6: Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình vẽ

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Khẳng định nào sau đây là khẳng định đúng?

A. Hàm số y = f(x) đạt cực đại tại x = 1 .

B. Hàm số y = f(x) có một điểm cực tiểu.

C. Đồ thị hàm số y = f(x) có hai điểm cực trị.

D. Hàm số không có cực trị.

Lời giải:.

Chọn B

Dựa vào đồ thị của y = f'(x) ta có bảng xét dấu

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Dựa vào bảng xét dấu hàm số đạt cực tiểu tại x = 3.

Bài 7: Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình bên dưới. Khi đó trên R hàm số y = f(x)

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

A. Có 1 điểm cực đại và 1 điểm cực tiểu.

B. Có 2 điểm cực đại và 2 điểm cực tiểu.

C. Có 1 điểm cực đại và 2 điểm cực tiểu.

D. Có 2 điểm cực đại và 1 điểm cực tiểu.

Lời giải:.

Chọn A

Dựa vào đồ thị hàm số f'(x) ta có bảng xét dấu:

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Ta thấy f'(x) đổi dấu từ dương sang âm khi đi qua x1 và đổi dấu từ âm sang dương khi đi qua x2. Vậy hàm số y = f(x) có 1 cực đại và một cực tiểu.

Bài 8: Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm f'(x) như hình vẽ

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Hàm số y = f(x) đã cho có bao nhiêu điểm cực tiểu

A. 3.

B. 0.

C. 1.

D. 2.

Lời giải:

Chọn B

Dựa vào đồ thị ta thấy f'(x) > 0, ∀ x ∈ R nên hàm số y = f(x) đồng biến trên R

Vậy hàm số y = f(x) không có cực trị

Bài 9: Cho hàm số y = f(x) có có đồ thị của hàm số y = f'(x) như hình vẽ bên. Hàm số y = f(x2)có bao nhiêu điểm cực tiểu

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

A. 3.

B. 2.

C. 1.

D. 4.

Lời giải:

Chọn A

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bảng biến thiên:

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Hàm số có ba điểm cực tiểu.

Bài 10: Cho hàm số y = f(x) có đồ thị đạo hàm y = f'(x) như hình bên.

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Khẳng định nào sau đây là đúng?

A. Hàm số y = f(x) - x2 - x đạt cực đại tại x = 0.

B. Hàm số y = f(x) - x2 - x đạt cực tiểu tại x = 0.

C. Hàm số y = f(x) - x2 - x không đạt cực trị tại x = 0.

D. Hàm số y = f(x) - x2 - x không có cực trị.

Lời giải:

Chọn A

Ta có: y' = f'(x) - (2x + 1)Þy' = 0 ⇔ f'(x) = 2x + 1.

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Từ đồ thị ta thấy x = 0 là nghiệm đơn của phương trình y' = 0.

Ta có bảng biến thiên trên (-∞;2):

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Từ bảng biến thiên => hàm số đạt cực đại tại x = 0.

D. Bài tập tự luyện

Bài 1. Cho hàm số y = f(x) có đồ thị f'(x) như hình vẽ. Hỏi hàm số y = f(x) có bao nhiêu điểm cực trị?

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài 2. Cho hàm số y = f(x) có đồ thị f'(x) như hình vẽ. Tìm số điểm cực trị của hàm số v(x) = f(x2 – 3).

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài 3. Cho hàm số y = f(x) có đồ thị f'(x) như hình vẽ. Tìm số điểm cực trị của hàm số f(x)

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài 4. Hàm số f(x) có đạo hàm f'(x) trên tập số thực ℝ và có đồ thị như hình vẽ dưới đây (chỉ đạt cực trị tại 3 điểm và cũng chỉ có 3 điểm chung vói trục hoành). Tìm số điểm cực trị của hàm số g(x) = [f(x)]2.

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài 5. Cho hàm số y = f(x) xác định và có đạo hàm f'(x). Biết rằng hình vẽ dưới đây là đồ thị của hàm số y = f'(x). Tính số điểm cực trị của hàm số f(x).

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài 6. Cho hàm số y = f(x) có đồ thị như hình vẽ. Tìm tọa độ điểm cực đại, cực tiểu của hàm số?

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài 7. Cho hàm số y = f(x) xác định và liên tục trên ℝ, có đồ thị như hình dưới. Hỏi hàm số g(x) = f(x2 – 2) có bao nhiêu điểm cực tiểu?

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài 8. Cho hàm số y = f(x) = ax3 + bx2 + cx + d với a khác 0, có đồ thị như hình dưới. Tìm tọa độ điểm cực đại của đồ thị hàm số y = f(4 – x) + 1?

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài 9. Cho hàm số y = f(x) = ax3 + bx2 + cx + d với a khác 0 và có đồ thị như hình dưới. Tìm số điểm cực trị của g(x) = f(-2x2 + 4x)?

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Bài 10. Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình vẽ. Hỏi hàm số có bao nhiêu điểm cực trị?

Tìm cực trị của hàm số dựa vào đồ thị (cực hay, có lời giải)

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

  • Tìm m để hàm trùng phương có 3 điểm cực trị (cực hay, có lời giải)
  • Tìm m để hàm trùng phương có 1 điểm cực trị (cực hay, có lời giải)
  • Tìm m để hàm bậc ba có 2 điểm cực trị (cực hay, có lời giải)
  • Tìm m để hàm bậc ba không có cực trị (cực hay, có lời giải)
  • Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác đều (cực hay, có lời giải)
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:

  • 30 đề toán, lý hóa, anh, văn 2025 (100-170k/1 cuốn)
  • 30 đề Đánh giá năng lực đại học quốc gia HN 2025 (cho 2k7)
  • 30 đề Đánh giá năng lực đại học quốc gia tp. Hồ Chí Minh 2025 (cho 2k7)

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

1000 Đề thi bản word THPT quốc gia cá trường 2023 Toán, Lí, Hóa....

4.5 (243)

799,000đ

199,000 VNĐ

Đề thi thử DGNL (bản word) các trường 2023

4.5 (243)

799,000đ

199,000 VNĐ

xem tất cả Trang trước Trang sau ung-dung-dao-ham-de-khao-sat-va-ve-do-thi-cua-ham-so.jsp Giải bài tập lớp 12 sách mới các môn học
  • Giải Tiếng Anh 12 Global Success
  • Giải sgk Tiếng Anh 12 Smart World
  • Giải sgk Tiếng Anh 12 Friends Global
  • Lớp 12 Kết nối tri thức
  • Soạn văn 12 (hay nhất) - KNTT
  • Soạn văn 12 (ngắn nhất) - KNTT
  • Giải sgk Toán 12 - KNTT
  • Giải sgk Vật Lí 12 - KNTT
  • Giải sgk Hóa học 12 - KNTT
  • Giải sgk Sinh học 12 - KNTT
  • Giải sgk Lịch Sử 12 - KNTT
  • Giải sgk Địa Lí 12 - KNTT
  • Giải sgk Giáo dục KTPL 12 - KNTT
  • Giải sgk Tin học 12 - KNTT
  • Giải sgk Công nghệ 12 - KNTT
  • Giải sgk Hoạt động trải nghiệm 12 - KNTT
  • Giải sgk Giáo dục quốc phòng 12 - KNTT
  • Giải sgk Âm nhạc 12 - KNTT
  • Giải sgk Mĩ thuật 12 - KNTT
  • Lớp 12 Chân trời sáng tạo
  • Soạn văn 12 (hay nhất) - CTST
  • Soạn văn 12 (ngắn nhất) - CTST
  • Giải sgk Toán 12 - CTST
  • Giải sgk Vật Lí 12 - CTST
  • Giải sgk Hóa học 12 - CTST
  • Giải sgk Sinh học 12 - CTST
  • Giải sgk Lịch Sử 12 - CTST
  • Giải sgk Địa Lí 12 - CTST
  • Giải sgk Giáo dục KTPL 12 - CTST
  • Giải sgk Tin học 12 - CTST
  • Giải sgk Hoạt động trải nghiệm 12 - CTST
  • Giải sgk Âm nhạc 12 - CTST
  • Lớp 12 Cánh diều
  • Soạn văn 12 Cánh diều (hay nhất)
  • Soạn văn 12 Cánh diều (ngắn nhất)
  • Giải sgk Toán 12 Cánh diều
  • Giải sgk Vật Lí 12 - Cánh diều
  • Giải sgk Hóa học 12 - Cánh diều
  • Giải sgk Sinh học 12 - Cánh diều
  • Giải sgk Lịch Sử 12 - Cánh diều
  • Giải sgk Địa Lí 12 - Cánh diều
  • Giải sgk Giáo dục KTPL 12 - Cánh diều
  • Giải sgk Tin học 12 - Cánh diều
  • Giải sgk Công nghệ 12 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 12 - Cánh diều
  • Giải sgk Âm nhạc 12 - Cánh diều

Từ khóa » Số Dựa