Tìm Cực Trị Hàm Số Y=2x-căn(x^2-3) - Nguyễn Quang Minh Tú - Hoc247

Tập xác định : \(D=\)(\(-\infty;-\sqrt{3}\)] \(\cup\) [\(\sqrt{3};+\infty\))

Ta có : \(y'=2-\frac{x}{\sqrt{x^2-3}}=\frac{2\sqrt{x^2-3}-x}{\sqrt{x^2-3}}\Rightarrow y'=0\Leftrightarrow2\sqrt{x^2-3}=x\)

\(\Leftrightarrow\begin{cases}x\ge0\\4\left(x^2-3\right)=x^2\end{cases}\)\(\Leftrightarrow x=2\)

Và hàm số không có đạo hàm tại \(x=\pm\sqrt{3}\)

Bảng biến thiên

x y' y - 8 -căn 3 căn 3 2 + 8 + - + - 8 3 + 8

Hàm số đạt cực tiểu tại \(x=2;y\left(2\right)=3\)

Hàm số không có cực đại

Từ khóa » Hàm Số Y=2x-3/căn X^2-1