Tìm đạo Hàm Của Hàm Số \(y={{\pi }^{x}}\). - Hoc247
Có thể bạn quan tâm
- Câu hỏi:
Tìm đạo hàm của hàm số \(y={{\pi }^{x}}\).
- A. \(y' = {\pi ^x}\ln \pi \)
- B. \(y' = \frac{{{\pi ^x}}}{{\ln \pi }}\)
- C. \(y' = x{\pi ^{x - 1}}\ln \pi \)
- D. \(y' = x{\pi ^{x - 1}}\)
Lời giải tham khảo:
Đáp án đúng: A
\({\left( {{\pi ^x}} \right)^\prime } = {\pi ^x}.\ln \pi .\)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 271654
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nguyễn Tất Thành lần 2
50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Có bao nhiêu cách lấy hai con bài từ cỗ bài tú lơ khơ gồm 52 con?
- Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \(~{{u}_{1}}=11\) và công sai d=4. Hãy tính \({{u}_{99}}\).
- Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ Khẳng định nào sau đây đúng?
- Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ. Tìm kết luận đúng?
- Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\) với bảng xét dấu đạo hàm như sau: Số điểm cực trị của hàm số y=f(x) là.
- Đồ thị hàm số \(y=\frac{2x-3}{x-1}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là
- Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số sau:
- Số giao điểm của đồ thị hàm số \(y={{x}^{4}}-2{{x}^{2}}+2\) và trục hoành là
- Với a, b là hai số thực dương tùy ý, \(\log \left( a{{b}^{2}} \right)\) bằng
- Tìm đạo hàm của hàm số \(y={{\pi }^{x}}\).
- Rút gọn biểu thức \(P={{a}^{\frac{1}{3}}}.\sqrt[6]{a}\) với a>0.
- Nghiệm của phương trình \({{8}^{2x-2}}-{{16}^{x-3}}=0\).
- Tập nghiệm của phương trình \({{\log }_{3}}\left( {{x}^{2}}-3x+3 \right)=1\) là
- Nguyên hàm của hs \(f\left( x \right)={{x}^{3}}+3x+2\) là hàm số nào trong các hàm số sau ?
- Phát biểu nào sau đây là phát biểu Đ
- Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ a\,;\,b \right]\) và \(f\left( a \right)=-2, f\left( b \right)=-4\). Tính \(T=\int\limits_{a}^{b}{{f}'\left( x \right)\,\text{d}x}\).
- Tính tích phân \(I=\int\limits_{0}^{2}{\left( 4x-3 \right)dx}\) .
- Số phức liên hợp của số phức \(z=3i-1\) là
- Cho hai số phức \({{z}_{1}}=1-2i, {{z}_{2}}=-2+i\). Tìm số phức \(z={{z}_{1}}{{z}_{2}}\)
- Số phức \(z=2-3i\) có điểm biểu diễn là
- Khối lập phương có thể tích bằng 8. Tính độ dài cạnh của hình lập phương đó
- Cho hình chóp S.ABC có tam giác ABC vuông tại A, AB=a, AC=2a. SA vuông góc với mặt phẳng đáy \(\left( ABC \right)\) và \(SA=a\sqrt{3}\). Tính thể tích V của khối chóp S.ABC.
- Cho khối nón có chiều cao bằng \(2a\) và bán kính bằng \(a\). Thể tích của khối nón đã cho bằng
- Cho khối trụ có chiều cao bằng 4a và bán kính đáy bằng 2a. Thể tích khối trụ đã cho bằng
- Trong kg với trục hệ tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}.
- Trong kg Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=9\).
- Trong kg Oxyz, điểm \(M\left( 3;4;-2 \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?
- Trong không gian Oxyz, đường thẳng d: đi qua điểm nào sau đây?
- Gieo một con súc sắc. Xs để mặt chấm chẵn xuất hiện là:
- Hs nào dưới đây đồng biến trên \(\mathbb{R}\)?
- Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\frac{{{x}^{3}}}{3}+2{{x}^{2}}+3x-4\) trên đoạn \(\left[ -4;\,0 \right]\) lần lượt là M và n. Giá trị của tổng M+n bằng
- Tìm tập nghiệm của bất pt \({{\left( \frac{1}{2} \right)}^{x}}>8.\)
- Cho \(\int\limits_{1}^{2}{\left[ 4f\left( x \right)-2x \right]dx=1.}\) Khi đó \(\int\limits_{1}^{2}{f\left( x \right)dx}\) bằng :
- Cho số phức z thỏa mãn \(\left( 1+2i \right)z=5{{\left( 1+i \right)}^{2}}\). Tổng bình phương phần thực và phần ảo của số phức \(w=\bar{z}+iz\) bằng:
- Cho hình hộp chữ nhật \(ABCD.{A}'{B}'{C}'{D}'\) có \(AB=A{A}'=a,AD=2a\). Gọi góc giữa đường chéo \({A}'C\) và mặt phẳng đáy \(\left( ABCD \right)\) là \(\alpha \). Khi đó \(\tan \alpha \) bằng
- Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, \(BC=a\sqrt{2}\), đường thẳng SA vuông góc với mặt phẳng đáy và góc giữa đường thẳng SC và mặt phẳng đáy bằng \({{30}^{0}}\). Gọi h là khoảng cách từ điểm S đến mặt phẳng \(\left( ABC \right)\). Mệnh đề nào dưới đây là đúng?
- Trong không gian Oxyz, cho hai điểm \(I\left( 1;\,\,0;\,\,-1 \right)\) và \(A\left( 2;\,\,2;\,\,-3 \right)\). Mặt cầu \(\left( S \right)\) tâm I và đi qua điểm A có phương trình là.
- Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 2;-1;3 \right)\) và mặt phẳng \(\left( P \right):2x-3y+z-1=0\). Viết phương trình đường thẳng d đi qua A và vuông góc với \(\left( P \right)\).
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Hàm số \(y={{\left( f\left( x \right) \right)}^{2}}\) có bao nhiêu điểm cực trị?
- Gọi S là tổng tất cả các giá trị nguyên của m để bất phương trình \(\ln \left( 7{{x}^{2}}+7 \right)\ge \ln \left( m{{x}^{2}}+4x+m \right)\) nghiệm đúng với mọi x thuộc \(\mathbb{R}\). Tính S.
- Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\). Biết \(\int\limits_{1}^{{{e}^{3}}}{\frac{f\left( \operatorname{lnx} \right)}{x}}dx=7, \int\limits_{0}^{\frac{\pi }{2}}{f\left( \cos x \right).\sin x}dx=3\). Tính \(\int\limits_{1}^{3}{\left( f\left( x \right)+2x \right)}dx\)
- Cho số phức \(z=a+bi\left( a,b\in \mathbb{R} \right)\) thỏa mãn điều kiện \(\left| {{z}^{2}}+4 \right|=2\left| z \right|.\) Đặt \(P=8\left( {{b}^{2}}-{{a}^{2}} \right)-12.\) Mệnh đề nào dưới đây đúng ?
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Hình chiếu của S trên mặt phẳng \(\left( ABCD \right)\) trùng với trung điểm của cạnh AB. Cạnh bên \(SD=\frac{3a}{2}\). Tính thể tích khối chóp S.ABCD theo a.
- Một viên gạch hoa hình vuông cạnh 40 cm được thiết kế như hình bên dưới. Diện tích mỗi cánh hoa (phần tô đậm) bằng
- Trong không gian với hệ tọa độ Oxyz, cho \(A\left( 1;-4;0 \right),B\left( 3;0;0 \right)\). Viết phương trình đường trung trực \(\left( \Delta \right)\) của đoạn AB biết \(\left( \Delta \right)\) nằm trong mặt phẳng \(\left( \alpha \right):x+y+z=0\)
- Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị hàm số \(y={f}'\left( x \right)\) cho bởi hình vẽ bên. Đặt \(g\left( x \right)=f\left( x \right)-\frac{{{x}^{2}}}{2}, \forall x\in \mathbb{R}\). Hỏi đồ thị hàm số \(y=g\left( x \right)\) có bao nhiêu điểm cực trị
- Có bao nhiêu giá trị nguyên của tham số m \(\left( \left| m \right|
- Cho hàm số \(f(x)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e\). Hàm số \(y={f}'(x)\) có đồ thị như hình vẽ. Trong các khẳng định sau, khẳng định nào đúng?
- Cho số phức z thỏa mãn \(5\left| z-i \right|=\left| z+1-3i \right|+3\left| z-1+i \right|\). Tìm giá trị lớn nhất M của \(\left| z-2+3i \right|\) ?
- Trong không gian Oxyz, cho tứ diện ABCD với \(A\left( m;0;0 \right), B\left( 0;m-1;0 \right); C\left( 0;0;m+4 \right)\) thỏa mãn BC=AD, CA=BD và AB=CD. Giá trị nhỏ nhất của bán kính mặt cầu ngoai tiếp tứ diện ABCD bằng
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 4
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 1 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Quá trình văn học và phong cách văn học
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Tây Tiến
Ai đã đặt tên cho dòng sông
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Nguyên Hàm Pi Bình
-
Tìm Nguyên Hàm F(x)=tích Phân π^2 Dx
-
Tìm Nguyên Hàm \(F(x) = \int {{\pi ^2}dx} \) - Trắc Nghiệm Online
-
Tìm Nguyên Hàm 1/pi | Mathway
-
Tìm Nguyên Hàm Pi/x | Mathway
-
Tìm Nguyên Hàm (F(x) = Int {{pi ^2}dx} ) - Sách Toán
-
Tìm Nguyên Hàm Fx=∫π2dx . | Cungthi.online
-
Bảng Nguyên Hàm Các Hàm Số Thường Gặp (Đầy Đủ) - Mathvn
-
Bảng Nguyên Hàm Và Công Thức Nguyên Hàm Đầy Đủ, Chi Tiết
-
Bảng đầy đủ Nhất CÔNG THỨC TÍNH NGUYÊN HÀM
-
Cho (f( X ) = (x)((((cos )^2)x)) ) Trên (( ( - (pi )(2)
-
Biết F(x) Là Một Nguyên Hàm Của Hàm F(x) = Sin 2x. Và F(pi/4)=1...
-
Biết Tích Phân Từ -pi đến Pi Cos^2 X/ (1+3^-x) Dx = M
-
Cho \(f(x) = \dfrac{{4m}}{\pi } + {\sin ^2}x\). Tìmmđể Nguyên Hàm F(x ...