Tìm điều Kiện để Hàm Số Bậc Ba Có Cực Trị Hoặc Không Có Cực Trị
Có thể bạn quan tâm
Tìm điều kiện để hàm số bậc ba có cực trị hoặc không có cực trị
Phương pháp giải bài toán tìm điều kiện để hàm số có hoặc không có cực trị (bậc 3)
Hàm số có hai điểm cực trị (có cực đại cực tiểu) khi $y'=0$ có hai nghiệm phân biệt $\Leftrightarrow \Delta {{'}_{y'}}>0.$
Hàm số không có cực trị khi $y'=0$ vô nghiệm hoặc có nghiệm kép $\Leftrightarrow \Delta {{'}_{y'}}\le 0.$.
Bài tập tìm điều kiện để hàm số có/không có cực trị có đáp án
| Bài tập 1: Số giá trị nguyên của tham số $m$ để hàm số $y={{x}^{3}}-3m{{x}^{2}}+12x+1$ không có cực trị là A. 3. B. 5. C. 4. D. 6. |
Lời giải chi tiết
Ta có: $y'=3{{x}^{2}}-6mx+12=0\Leftrightarrow {{x}^{2}}-2mx+4=0\text{ }\left( * \right).$
Để hàm số không có cực trị thì $\Delta {{'}_{\left( * \right)}}={{m}^{2}}-2\le 0\Leftrightarrow -2\le m\le 2.$
Kết hợp $m\in \mathbb{Z}\Rightarrow $ có 5 giá trị của $m$. Chọn B.
| Bài tập 2: Số giá trị nguyên của tham số $m\in \left[ -10;10 \right]$ để hàm số $y=\frac{1}{3}{{x}^{3}}+m{{x}^{2}}-\left( 1-2m \right)x+m+2$ có cực đại và cực tiểu là A. 20. B. 21. C. 10. D. 9. |
Lời giải chi tiết
Ta có: $y'={{x}^{2}}+2mx-\left( 1-2m \right).$
Để hàm số có cực đại và cực tiểu $\Leftrightarrow \Delta {{'}_{y'}}={{m}^{2}}+\left( 1-2m \right)={{m}^{2}}-2m+1={{\left( m-1 \right)}^{2}}>0\Leftrightarrow m\ne 1.$
Kết hợp $\left\{ \begin{matrix} m\in \left[ -10;10 \right] \\ m\in \mathbb{Z}\text{ } \\\end{matrix} \right.\Rightarrow $ có 20 giá trị của $m.$ Chọn A.
| Bài tập 3: Hàm số $y={{x}^{3}}-3{{x}^{2}}+3\left( 1-{{m}^{2}} \right)x+1$có 2 điểm cực trị khi và chỉ khi. A. $m\ne 1.$ B. $m\in \mathbb{R}.$ C. $m\ne 0.$ D. Không tồn tại $m.$ |
Lời giải chi tiết
Ta có: $y'=3{{x}^{2}}-6x+3\left( 1-{{m}^{2}} \right)=0\Leftrightarrow {{x}^{2}}-2x+1-{{m}^{2}}=0\text{ (1)}\text{.}$
Để hàm số có 2 điểm cực trị $\Leftrightarrow \Delta {{'}_{y'}}=1-\left( 1-{{m}^{2}} \right)={{m}^{2}}>0\Leftrightarrow m\ne 0.$ Chọn C.
| Bài tập 4: Cho hàm số $y=-{{x}^{3}}+\left( 2m-1 \right){{x}^{2}}-2\left( 2-m \right)x-2.$ Số giá trị nguyên của tham số $m\in \left[ -20;20 \right]$ để hàm số có cực trị là A. 39. B. 3. C. 38. D. 2. |
Lời giải chi tiết
Ta có: $y'=-3{{x}^{2}}+2\left( 2m-1 \right)x+m-2.$ Để hàm số có cực trị thì $y'=0$ có 2 nghiệm phân biệt
$\Leftrightarrow \Delta {{'}_{y'}}={{\left( 2m-1 \right)}^{2}}+3\left( m-2 \right)>0\Leftrightarrow 4{{m}^{2}}-m-5>0\Leftrightarrow \left[ \begin{matrix} m>\frac{5}{4}\text{ } \\ m<-1 \\\end{matrix}. \right.$
Kết hợp $\left\{ \begin{matrix} m\in \left[ -20;20 \right] \\ m\in \mathbb{Z}\text{ } \\\end{matrix} \right.\Rightarrow $ có 38 giá trị của tham số $m.$ Chọn C.
| Bài tập 5: Số giá trị nguyên dương của m để hàm số $y={{x}^{3}}-3{{x}^{2}}+mx-5$có cực trị là: A. 3. B. 4. C. 2. D. Vô số. |
Lời giải chi tiết
Ta có: $y'=3{{x}^{2}}-6x+m.$ Hàm số đã cho có cực trị $\Leftrightarrow y'=0$ có 2 nghiệm phân biệt
$\Leftrightarrow \Delta {{'}_{y'}}=9-3m>0\Leftrightarrow m<3$
Kết hợp $m\in \mathbb{Z}*\Rightarrow m=\left\{ 1;2 \right\}.$ Chọn C.
| Bài tập 6: Tìm tất cả các giá trị của m để hàm số $y={{x}^{3}}+2m{{x}^{2}}+mx-1$ có cực trị. A. $\left[ \begin{matrix} m>\frac{3}{4} \\ m<0 \\\end{matrix} \right..$ B. $\left[ \begin{matrix} m\ge \frac{3}{4} \\ m\le 0 \\\end{matrix} \right..$ C. $m<0.$ D. $0<m<\frac{3}{4}.$ |
Lời giải chi tiết
Ta có: $y'=3{{x}^{2}}+4mx+m.$ Hàm số đã cho có cực trị $\Leftrightarrow y'=3{{x}^{2}}+4mx+m$ có 2 nghiệm phân biệt
$\Leftrightarrow \Delta '=4{{m}^{2}}-3m>0\Leftrightarrow \left[ \begin{matrix} m>\frac{3}{4} \\ m<0 \\\end{matrix} \right.$. Chọn A.
| Bài tập 7: Cho hàm số $y=-2{{x}^{3}}+\left( 2m-1 \right){{x}^{2}}-\left( {{m}^{2}}-1 \right)x+2.$ Hỏi có tất cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số đã cho có hai điểm cực trị. A. 4. B. 5. C. 3. D. 6. |
Lời giải chi tiết
Ta có: $y'=-6{{x}^{2}}+2\left( 2m-1 \right)x-\left( {{m}^{2}}-1 \right).$
Hàm số đã cho có 2 điểm cực trị khi $\Delta '={{\left( 2m-1 \right)}^{2}}-6\left( {{m}^{2}}-1 \right)>0\Leftrightarrow -2{{m}^{2}}-4m+7>0$ (xét $m\in \mathbb{Z}$) $\Leftrightarrow \frac{-2-3\sqrt{2}}{2}\le m\le \frac{-2+3\sqrt{3}}{2}\Rightarrow -3,1<m<1,12\Rightarrow m=-3;-2;-1;0;1.$ Chọn B.
| Bài tập 8: Cho hàm số $y=\frac{\left( m-1 \right){{x}^{3}}}{3}+\left( m-1 \right){{x}^{2}}+4x-1.$ Hàm số đã cho đạt cực tiểu tại ${{x}_{1}}$, đạt cực đại tại ${{x}_{2}}$đồng thời ${{x}_{1}}<{{x}_{2}}$ khi và chỉ khi: A. $m<1.$ B. $\left[ \begin{matrix} m<1 \\ m>5 \\\end{matrix} \right..$ C. $m>5.$ D. \[\left[ \begin{matrix} m=1 \\ m=5 \\\end{matrix} \right..\] |
Lời giải chi tiết
Với $m=1$ ta có $y=4x-1$ hàm số đã cho không có cực trị.
Với $m\ne 1$ ta có: $y'=\left( m-1 \right){{x}^{2}}+2\left( m-1 \right)x+4$
Để hàm số đã cho đạt cực tiểu tại ${{x}_{1}}$, đạt cực đại tại ${{x}_{2}}$đồng thời
${{x}_{1}}<{{x}_{2}}$$\Leftrightarrow \left\{ \begin{matrix} a=m-1<0\text{ } \\ \Delta {{'}_{y'}}=y'={{\left( m-1 \right)}^{2}}-4\left( m-1 \right)>0 \\\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} m<1\text{ } \\ \left( m-1 \right)\left( m-5 \right)>0 \\\end{matrix} \right.\Leftrightarrow m<1.$ Chọn A.
| Bài tập 9: Cho hàm số $y=\frac{m{{x}^{3}}}{3}-\left( m+1 \right){{x}^{2}}+3\left( m+1 \right)x+1.$ Tìm $m$ để hàm số đạt cực đại tại ${{x}_{1}}$ và cực tiểu tại ${{x}_{2}}$sao cho ${{x}_{1}}>{{x}_{2}}.$ A. $-1<m<0.$ B. $-1<m<\frac{1}{2}.$ C. $-1\le m<0.$ D. $-1\le m\le \frac{1}{2}.$ |
Lời giải chi tiết
Với $m=0\Rightarrow y=-{{x}^{2}}+3x+1$ không thỏa mãn có 2 điểm cực trị.
Với $m\ne 0$. Ta có: $y'=m{{x}^{2}}-2\left( m+1 \right)x+3\left( m+1 \right).$ Để hàm số đạt cực đại tại ${{x}_{1}}$ và cực tiểu tại ${{x}_{2}}$sao cho ${{x}_{1}}>{{x}_{2}}\Leftrightarrow \left\{ \begin{matrix} a=\frac{m}{3}<0\text{ } \\ \Delta {{'}_{y'}}={{\left( m+1 \right)}^{2}}-3m\left( m+1 \right)=\left( m+1 \right)\left( 1-2m \right)>0 \\\end{matrix} \right.\Leftrightarrow -1<m<0.$ Chọn A.
Từ khóa » đk Hàm Bậc 3 Có Cực Trị
-
Tìm điều Kiện để Hàm Số Bậc 3 Có Cực Trị Thỏa Mãn điều Kiện Cho Trước
-
Cực Trị Của Hàm Số Là Gì? Công Thức Tính Cực Trị Hàm Số Bậc Ba Cực ...
-
Cực Trị Hàm Số Bậc 3 ? Công Thức, điều Kiện, Bài Tập để Tìm Cực Trị ...
-
Phương Pháp Tìm Cực Trị Của Hàm Số Bậc 3
-
Cực Trị Hàm Số Bậc 3 (có Lời Giải Chi Tiết)
-
Chuyên đề Cực Trị Hàm Số Bậc 3 Và Công Thức Tính Nhanh Cực Trị
-
Tìm M để Hàm Số Có Cực Trị (hàm Số đa Thức Bậc 3) - Toán Thầy Định
-
Tìm điều Kiện để Hàm Số Bậc Ba Có Cực Trị Hoặc Không Có Cực Trị
-
Ứng Dụng Đồ Thị Hàm Số Bậc 3 Vào Giải Toán - Kiến Guru
-
Công Thức Tính Nhanh Cực Trị Hàm Bậc 3 - Toploigiai
-
Cách Tìm Cực Trị Của Hàm Số Bậc 3 (tìm Cực đại, Cực Tiểu ... - HayHocHoi
-
Cực Trị Hàm đa Thức Bậc 3 Và Bậc 4 - Giáo Án Mẫu
-
Top 15 Hàm Bậc 3 Không Có Cực Trị
-
Phương Pháp Giải Bài Toán Cực Trị Có Tham Số đối Với Các Hàm Số Cơ ...