Tìm Giá Trị Lớn Nhấ Và Giá Trị Nhỏ Nhất Của Hàm Số Và Biểu Thức Bậc 2
Có thể bạn quan tâm
- Trang chủ
- Đăng ký
- Đăng nhập
- Liên hệ
Tài liệu - Ebook
Thư viện tài liệu, ebook, đồ án, luận văn, giáo trình tham khảo cho học sinh, sinh viên
Chuyên đề: Tìm giá trị lớn nhấ và giá trị nhỏ nhất của hàm số và biểu thức bậc 2
Cách trình bày và giải toán:
Trong phần trình bày này, Thầy sẽ hướng dẫncác em sử dụng máy tính casio Fx-
570 ES plus hoặc Fx- 570 VN plus hỗ trợ giải dạng toán này, Vì Fx- 570 VN plus
giải quyết tốt nhất bài này, còn Fx- 570 ES plus chúng ta phải tư duy chút xíu nên
thầy sẽ liệt kê các bước thực hiện:
+ B1: khi đọc đề cần phải nắm rõ các hệ số a, b, c.(dùng chủ yếu cho Fx- 570 ES).
8 trang | Chia sẻ: vudan20 | Lượt xem: 5711 | Lượt tải: 0 Bạn đang xem nội dung tài liệu Chuyên đề: Tìm giá trị lớn nhấ và giá trị nhỏ nhất của hàm số và biểu thức bậc 2, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trênCHUYÊN ĐỀ : TÌM GTLN VÀ GTNN CỦA HÀM SỐ VÀ BIỂU THỨC BẬC 2. November 6, 2018 1 DVD CHUYÊN ĐỀ: PHƯƠNG PHÁP TÌM NHANH GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ/ĐA THỨC BẬC 2 I. Kiến Thức Cần Nắm: Khái niệm về giá trị lớn nhất( GTLN/max) và giá trị nhỏ nhất(GTNN/min): Cho hàm số/đa thức : P = P(x) và các số thực M, m khi đó: + M được gọi là GTLN của P nếu : ( ) ,P x M x và tồn tại P(xo) = M Ký hiệu : maxP M + m được gọi là GTNN của P nếu : ( ) ,P x m x và tồn tại P(xo) = m Ký hiệu: minP m Hàm số hay đa thức bậc 2: 2( ) (x) ax ( 0)(1)P x f bx c a Hàm số (1) là hàm số bậc 2 cos đồ thị là Parabol (P) như hình dưới. Qua 2 đồ thị trên ta thấy hàm bậc 2 sẽ có GTLN và GTNN phụ thuộc vào hệ số a. Nếu a<0 : hàm số đạt GTLN tại đỉnh của (P). Nếu a>0: hàm số đạt GTNN tải đỉnh của (P). Do đó, dạng bài toán tìm GTNN và GTLN của hàm số/đa thức bậc 2 ta đi tìm tọa độ đỉnh của (P).( Phương pháp này trình bày cho các em học sinh lớp 8, và lớp 9 tham khảo do đó tôi không đi sâu vào hàm số bậc 2) CHUYÊN ĐỀ : TÌM GTLN VÀ GTNN CỦA HÀM SỐ VÀ BIỂU THỨC BẬC 2. November 6, 2018 2 DVD Hằng đẳng thức đáng nhớ: 2 2 2 2 2 2 2 2 1.( ) 2 2.( ) 2 3. ( )( ) a b a ab b a b a ab b a b a b a b Một số phương pháp tìm Max – min: 2P ( )ax b A . Vì 2 0,( ) xax b , nên: min 2 0( ) A A P A P A ax b , khi b x a 2P ( )B ax b . Vì 2 0,( ) xax b , nên: max 2( ) B P B P B B ax b , khi b x a II. Phương Pháp Giải Toán: 1. Biến đổi cở bản để hình thành phươ ng pháp: Cho hàm số / đa thức: 2 2 ( ) ( 0)(1) ( ) a ( 0)(2) P x ax bx c a P x x h k a Hàm số được cho dưới dạng (1) và(2) là hai dạng của hàm bậc 2. (1) Là hàm bậc 2 tổng quát (2) Là hàm bậc 2 theo tọa độ đỉnh. Hầu hết bài toán dạng này đề sẽ cho hàm dạng (1) do đó ta sẽ đưa nó về dạng (2), lúc đó bài toán đã giải quyết xong được 70%.(tại sao lại vây???).Ở phần trên, ta đã biết phương pháp tìm max và min rồi phải không? Chúng ta có thấy sự đồng nhất giữa dạng (2) và biểu thức P ở trên ko?!!. Chúng là một. Chúng ta bắt đầu vào cách biến đổi để đưa dạng (1) về dạng (2) nhá: Ta có: 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 ( ) 2. 2 4 4 4 4 b b ac x x a a b c b b b c P x ax bx c a x x a x x a a a aa a b c b a a aa a CHUYÊN ĐỀ : TÌM GTLN VÀ GTNN CỦA HÀM SỐ VÀ BIỂU THỨC BẬC 2. November 6, 2018 3 DVD 2 2 2 2 2 . (*),voi : 4 2 2 4 Dat : , (*) ( ) ( ) 2 4 4 b b x a x b ac a a a b h k P x a x h k a a a a Giờ ta đã thấy được sự đồng nhất này rồi nhỉ.!!!. Cách biến đổi trên quá dài dòng phải không nào. Đừng lo, chúng ta không cần làm như vậy đâu nhá. Chúng ta đi vào trọng tâm về phương pháp này nhá. 2. Phương pháp giải toán: Cho 2( )P x ax bx c 2 . 2 4 b a x a a , Ta xét hệ số a: Nếu 0:a thì P(x) đạt GTNN và GTNN của P là : min 4 kP a khi 2 b x a . Nếu 0:a thì P(x) đạt GTLN và GTLN của P là : max 4 kP a khi 2 b x a . Cách trình bày và giải toán: Trong phần trình bày này, Thầy sẽ hướng dẫncác em sử dụng máy tính casio Fx- 570 ES plus hoặc Fx- 570 VN plus hỗ trợ giải dạng toán này, Vì Fx- 570 VN plus giải quyết tốt nhất bài này, còn Fx- 570 ES plus chúng ta phải tư duy chút xíu nên thầy sẽ liệt kê các bước thực hiện: + B1: khi đọc đề cần phải nắm rõ các hệ số a, b, c.(dùng chủ yếu cho Fx- 570 ES). + B2: Dùng Fx- 570 VN, Vào Mode 5 3, Nhập hệ số a, b, c vào bấm = = = Máy hiện X- Value Maximum/Minimum = đây là vị trí GTLN hoặc GTNN của P hay chính là phần 2 b x a .Bấm tiếp = Y- Value Maximum/Minimum =..Đấy là GTLN hoặc GTNN mà ta cần tìm Xong rồi nhá. Việc còn lại chuyển sang bước 3 nhé. Dùng Fx- 570 ES chúng ta phải nắm các CT ở dưới: 2 4b ac ; 2 b a ; 4 P a . Chú ý: min max 0 : 0 : a a P P CHUYÊN ĐỀ : TÌM GTLN VÀ GTNN CỦA HÀM SỐ VÀ BIỂU THỨC BẬC 2. November 6, 2018 4 DVD + B3: “ Phiên dịch” vào bài làm : Ta có: 2( )P x ax bx c 2 . 2 4 b a x a a , Vì 2 0 2 b x a cho nên : + Nếu: min 2 0:a 0 4 42 a P P a a b x a tại 2 b x a + Nếu: 2 0:a 0 4 42 max a P P a a b x a tại 2 b x a Vậy chúng ta xong rồi.!!!!!. Nhận xét: + Phương pháp trên còn áp dụng vào dạng toán chứng minh biểu thức luôn dương hay luôn âm hoặc phương trình bậc 2 vô nghiệm sau này sẽ gặp vào học kỳ 2 lớp 9.(Phần này sẽ có một chuyên đề riêng). Vì đối tượng áp dụng chủ yếu dành cho các em học sinh lớp 8 và lớp 9 nên thầy không trình bày sâu về GTLN và GTNN của hàm số. Một số ví dụ: Ví dụ 1: Tìm GTLN và GTNN của các biểu thức sau: 2. 1 .B 2 3 4x a A x x b x 2 2 c. 3 4 7 d.B 3 4 A x x x x Giải: 2. 1a A x x Ta có: 2 1 1 1 4.( 1).1 5 1 0, 1, 1; ; 2 2.( 1) 2 4 4( 1) 4 . 2 4 b a b c a a b A a x a a ( Phần này nháp hoặc nhẩm trong đầu). Ta có: 2 2 1 5 2 4 1A x x x . Vì 2 2 0 0 1 1 2 2 x x CHUYÊN ĐỀ : TÌM GTLN VÀ GTNN CỦA HÀM SỐ VÀ BIỂU THỨC BẬC 2. November 6, 2018 5 DVD Nên ta có: min 2 5 5 5 5 1 , x 4 4 4 4 2 1 2 A A khix . Vậy GTLN của A là : 5 4 khi 1 x 2 . Sử dụng Casio 570VN plus: Bây giờ ta sẽ trình bày vào bài làm thôi nào: Ta quan tâm 2 số : 2 1 2 b X a và Y= 4 5 4 A a . Chú ý khi ráp vào công thức ở phần trên nhớ đổi dấu X nhá. Ta có: 2 2 1 5 5 5 2 4 4 4 1 maxAA x x x khi 1 2 x Vậy là xong. Sử dụng Casio 570-ES plus: Ta tính : 2 2 5; 4 1 4.( 1).1 5 2 4 4 1 2 max b x b ac A a a (tính ngoài nháp). CHUYÊN ĐỀ : TÌM GTLN VÀ GTNN CỦA HÀM SỐ VÀ BIỂU THỨC BẬC 2. November 6, 2018 6 DVD Bài làm: Ta có: 2 2 1 5 5 5 2 4 4 4 1 maxAA x x x khi 1 2 x . Tương tự cho câu b, c và d nhá. Ví dụ 2: Chứng minh rằng: a. 24 4 3A x x luôn dương với mọi x. b. 2 2 3B x x luôn âm với mọi x. Bài giải: Ta áp dụng phương pháp ở trên giải quyết bài này nhá: a. Ta có: 2 2 2 2 1 2 2 04 4 3 4 4 1 2 x xA x x x x (ở đây thầy sử dụng hằng đẳng thức 1 nhá). Vì 2 2 0 0 02 1 A x xx b. Ta có : 2 22 2 1 2 2 01 22 3 x xx xB x x Vì 2 2 0 0 01 B x xx Ví dụ 3(biểu thức chứa căn): Tìm GTLN và GTNN (nếu có) của các biểu thức sau: a. 2 2 5A x x c. 24 3 7C x x e. 2 24 4 9 6 5E x x y y b. 2 29 6 8B x x d. 2 22 5D x x f. 22 2 18 22D yx y x Bài giải: a. Ta có: 2 2 22 5 2 1 4 ( 1) 4A x x x x x Vì 2 2 min 0 4 4 4 2 4 4 ( 1) ( 1) 2 x x A x x A khi 1x b. Ta có: 2 2 229 6 8 (9 6 1) 9 (3 1) 9B x x x x x CHUYÊN ĐỀ : TÌM GTLN VÀ GTNN CỦA HÀM SỐ VÀ BIỂU THỨC BẬC 2. November 6, 2018 7 DVD Vì 2 max(3 1) 9 9 9 3 3x x B B khi 1 3 x . e. 2 22 2 2 2 34 4 9 6 5 (4 4 1) (9 6 1) 3 (2 1) (3 1)E x x y y x x y y x y min3 , 3E x y E khi 1 1 ; 2 3 x y . Tương tự cho câu c và d và f nhá. Ví dụ 4: (Dạng phân thức): ( ) ( ) P x A Q x , Trong đó: P(x),Q(x) là đa thức bậc 2. Nhận xét: min ( ) Q( ) max max P x A x min min m ( ) Q( ) ax P x A x Để giải quyết dạng này ta biến đổi A về dạng: ( ) . ( ) ( ) P x b A a Q x Q x bằng cách chia đa thức.(a,b là hằng số). Do đó: + minQ( )max xA + min Q( )maxxA a. 2 2 3 6 11 2 5 x x x x A b. 2 2 9 6 2 . 3 3 2 1 2 x x x x B c. 2 2 3 6 19 2 5 x x x x A Giải: a. Ta có: 2 2 2 2 2 2 3 6 11 3( 2 5) 4 4 4 3 3 2 5 2 5 2 5 ( 1) 4 x x x x x x x x x x x A min 2 min 2 3 1 2 4 ( ( 1) 4) 4 1 ( 1) 4 maxA x A x khi 1x . Tương tự câu còn lại nhá. III. Bài Tập Tự Luyện: Câu 1. Tìm GTLN và GTNN của các biểu thức sau:((Nếu có) a. A = x2 – 11x + 30 = 0 c. 29 6 2B x x b. 2 2 2C x x d. 23 6 4D x x Câu 2. Chứng minh rằng: a. 2 1P x x luôn âm c. 2 2 1 2R x x luôn dương b. 2 2Q x x luôn dương d. 2 2 1S x y x y luôn âm CHUYÊN ĐỀ : TÌM GTLN VÀ GTNN CỦA HÀM SỐ VÀ BIỂU THỨC BẬC 2. November 6, 2018 8 DVD Câu 3. Tìm GTLN và GTNN của các biểu thức sau:((Nếu có) a. 2 1P x x +1 c. 2 24 4 1 5N x x b. 2 2 5Q x x d. 2 2 1 1 x x S x x c. 2 2 2 4 6 1 x x R x x f. 2 2 3 12 25 4 3 x x S x x Các file đính kèm theo tài liệu này:
- Dai so lop 9 Tim gia tri lon nhat va nho nhat cua ham bac 2_12479915.pdf
- Giáo án Sinh học 9 - Học kì II - Tiết 37, 38
7 trang | Lượt xem: 566 | Lượt tải: 0
- Giáo án Ngữ văn 6 tiết 29 đến 33
10 trang | Lượt xem: 528 | Lượt tải: 0
- Giáo án Tin học khối 9 - Trường THCS Nguyễn Huệ - Tiết 32 - Bài thực hành 6: Thêm màu sắc và định dạng trang chiếu
2 trang | Lượt xem: 619 | Lượt tải: 0
- Giáo án Ngữ văn 9 - Tuần 1 đến 6
94 trang | Lượt xem: 570 | Lượt tải: 0
- Giáo án Sinh học 6 kỳ I
93 trang | Lượt xem: 502 | Lượt tải: 0
- Giáo án Ngữ văn 7 Chủ đề: ôn tập tiết 68: ôn tập Tiếng Việt
6 trang | Lượt xem: 903 | Lượt tải: 0
- Giáo án Hình học 9 - Tuần 22
4 trang | Lượt xem: 495 | Lượt tải: 0
- Bài giảng Tin học 7 - Bài thực hành 6: Trình bày bảng điểm lớp em
7 trang | Lượt xem: 8111 | Lượt tải: 3
- Giáo án Ngữ văn lớp 6 tiết 118: Câu trần thuật đơn không có từ “là”
3 trang | Lượt xem: 630 | Lượt tải: 0
- Ôn tập, củng cố kiến thức phân môn Văn học lớp 9
48 trang | Lượt xem: 547 | Lượt tải: 0
Copyright © 2024 Doc.edu.vn - Chia sẻ những Thủ thuật tin học, phần mềm hay, hướng dẫn giải bài tập, sáng kiến kinh nghiệm, SKKN hay
Từ khóa » Bấm Máy Gtnn
-
Hướng Dẫn Tìm GTLN, GTNN Của Hàm Số Lớp 12 Bằng Máy Tính CASIO
-
Thủ Thuật Casio để Tìm Giá Trị Nhỏ Nhất, Giá Trị Lớn Nhất (min, Max)
-
CÁCH BẤM MÁY TÍNH TÌM GTLN GTNN CỦA HÀM SỐ - YouTube
-
Thủ Thuật Casio để Tìm Giá Trị Nhỏ Nhất, Giá Trị Lớn ...
-
Cách Bấm GTLN, GTNN Trên Máy Tính 580 Mới Nhất - Ý Nghĩa Là Gì ?
-
Cách Tìm Gtln - Gtnn Bằng Máy Tính Casio Fx-570vn Plus Lớp 10
-
CÁCH BẤM MÁY TÍNH TÌM GTLN GTNN CỦA HÀM SỐ
-
Cách Tìm Gtln Gtnn Bằng Máy Tính Casio Fx-570vn Plus Lớp 12
-
Hướng Dẫn Cách Bấm Máy Tính Giá Trị Lớn Nhất Nhỏ Nhất - ReviewEdu
-
Hướng Dẫn Tìm GTLN, GTNN Của Hàm Số Lớp 12 Bằng Máy Tính CASIO
-
TÌM NHANH GTLN VÀ GTNN TRÊN MÁY TÍNH CASIO FX 580VNX ...
-
[PDF] Casio Fx-570vn Plus Tìm Gtln Gtnn Trong Các Bài Toán Lớp 9 | Bitexedu
-
Phương Pháp Casio – Vinacal Bài 1: Tìm Giá Trị Lớn Nhất - Nhỏ Nhất
-
Cách Bấm Máy Tính Tìm Giá Trị Lớn Nhất Nhỏ Nhất Của Hàm Số Lượng ...