Tìm Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của Biểu Thức Chứa Dấu Căn

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa dấu cănChuyên đề Toán lớp 9 luyện thi vào lớp 10 Tải về Nâng cấp gói Pro để trải nghiệm website VnDoc.com KHÔNG quảng cáo, và tải file cực nhanh không chờ đợi. Mua ngay Từ 79.000đ Tìm hiểu thêm

Chuyên đề luyện thi vào 10: Tìm GTLN và GTNN của biểu thức chứa dấu căn

  • I. Nhắc lại về cách tìm GTLN và GTNN của biểu thức chứa căn
  • II. Bài tập ví dụ về bài toán tìm GTLN và GTNN của biểu thức chứa căn
  • III. Bài tập tự luyện về tìm GTLN và GTNN của biểu thức chứa căn

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa dấu căn là chuyên đề ôn thi vào lớp 10 hay, hướng dẫn các em học sinh cách tìm GTLN và GTNN của biểu thức chứa căn, kèm bài tập vận dụng cho các em tham khảo và luyện tập.

I. Nhắc lại về cách tìm GTLN và GTNN của biểu thức chứa căn

+ Cách 1: Biến đổi biểu thức về dạng tổng hoặc hiệu của một số không âm với hằng số

- Khi biến đổi biểu thức thành tổng của một số không âm với hằng số, ta sẽ tìm được giá trị nhỏ nhất của biểu thức ấy.

- Khi biến đổi biểu thức thành hiệu của một số với một số không âm, ta sẽ tìm được giá trị lớn nhất của biểu thức ấy.

+ Cách 2: Áp dụng bất đẳng thức Cauchy (Cô-si)

- Theo bất đẳng thức Cauchy với hai số a, b không âm ta có: a + b \ge 2\sqrt {ab}\(a + b \ge 2\sqrt {ab}\)

Dấu “=” xảy ra khi và chỉ khi a = b

+ Cách 3: Áp dụng bất đẳng thức chứa dấu giá trị tuyệt đối:

  • |a| + |b| ≥ |a + b|. Dấu “=” xảy ra khi và chỉ khi a.b ≥ 0
  • |a - b| ≤ |a| + |b|. Dấu “=” xảy ra khi và chỉ khi a.b ≤ 0

II. Bài tập ví dụ về bài toán tìm GTLN và GTNN của biểu thức chứa căn

Bài 1: Tìm giá trị lớn nhất của biểu thức  A = \frac{1}{{x - \sqrt x  + 1}}\(A = \frac{1}{{x - \sqrt x + 1}}\)

Lời giải:

Điều kiện xác định x ≥ 0

Để A đạt giá trị lớn nhất thì x - \sqrt x  + 1\(x - \sqrt x + 1\) đạt giá trị nhỏ nhất

x - \sqrt x  + 1 = x - 2.\frac{1}{2}.\sqrt x  + \frac{1}{4} - \frac{1}{4} + 1 = {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{3}{4}\(x - \sqrt x + 1 = x - 2.\frac{1}{2}.\sqrt x + \frac{1}{4} - \frac{1}{4} + 1 = {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{3}{4}\)

Lại có {\left( {\sqrt x  - \frac{1}{2}} \right)^2} \ge 0\forall x \ge 0 \Rightarrow {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4}\forall x \ge 0\({\left( {\sqrt x - \frac{1}{2}} \right)^2} \ge 0\forall x \ge 0 \Rightarrow {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4}\forall x \ge 0\)

Dấu “=” xảy ra \Leftrightarrow \sqrt x  = \frac{1}{2} \Leftrightarrow x = \frac{1}{4}\(\Leftrightarrow \sqrt x = \frac{1}{2} \Leftrightarrow x = \frac{1}{4}\)

Minx - \sqrt x  + 1 = \frac{3}{4} \Leftrightarrow x = \frac{1}{4}\(x - \sqrt x + 1 = \frac{3}{4} \Leftrightarrow x = \frac{1}{4}\)

Vậy MaxA = \frac{4}{3} \Leftrightarrow x = \frac{1}{4}\(A = \frac{4}{3} \Leftrightarrow x = \frac{1}{4}\)

Bài 2: Cho biểu thức A = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}\(A = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right):\frac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\)

a, Rút gọn A

b, Tìm giá trị lớn nhất của biểu thức P = A - 9\sqrt x\(P = A - 9\sqrt x\)

Lời giải:

a, A = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}\(A = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right):\frac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\) với x > 0, x ≠ 1

= \left( {\frac{1}{{\sqrt x \left( {\sqrt x  - 1} \right)}} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}\(= \left( {\frac{1}{{\sqrt x \left( {\sqrt x - 1} \right)}} + \frac{1}{{\sqrt x - 1}}} \right):\frac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\)

= \frac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x  - 1} \right)}}.\frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x  + 1}} = \frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x \left( {\sqrt x  - 1} \right)}} = \frac{{\sqrt x  - 1}}{{\sqrt x }}\(= \frac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}.\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}} = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x \left( {\sqrt x - 1} \right)}} = \frac{{\sqrt x - 1}}{{\sqrt x }}\)

b,P = A - 9\sqrt x  = \frac{{\sqrt x  - 1}}{{\sqrt x }} - 9\sqrt x  = 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right)\(P = A - 9\sqrt x = \frac{{\sqrt x - 1}}{{\sqrt x }} - 9\sqrt x = 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right)\) với x > 0, x ≠ 1

Với x > 0, x ≠ 1, áp dụng bất đẳng thức Cauchy có: \frac{1}{{\sqrt x }} + 9\sqrt x  \ge 2.\sqrt {\frac{1}{{\sqrt x }}.9\sqrt x }  = 6\(\frac{1}{{\sqrt x }} + 9\sqrt x \ge 2.\sqrt {\frac{1}{{\sqrt x }}.9\sqrt x } = 6\)

\Rightarrow  - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) \le  - 6 \Rightarrow 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) \le 1 - 6 =  - 5 \Leftrightarrow P \le  - 5\(\Rightarrow - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) \le - 6 \Rightarrow 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) \le 1 - 6 = - 5 \Leftrightarrow P \le - 5\)

Dấu “=” xảy ra \Leftrightarrow \frac{1}{{\sqrt x }} = 9\sqrt x  \Leftrightarrow x = \frac{1}{9}\(\Leftrightarrow \frac{1}{{\sqrt x }} = 9\sqrt x \Leftrightarrow x = \frac{1}{9}\)(thỏa mãn)

Vậy maxP =  - 5 \Leftrightarrow x = \frac{1}{9}\(P = - 5 \Leftrightarrow x = \frac{1}{9}\)

Bài 3: Cho biểu thức A = \left( {\frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{\sqrt x }}{{2 + \sqrt x }}} \right) - \frac{{6 + \sqrt x }}{{4 - x}}\(A = \left( {\frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{\sqrt x }}{{2 + \sqrt x }}} \right) - \frac{{6 + \sqrt x }}{{4 - x}}\)với x ≥ 0, x ≠ 4

a, Rút gọn A

b, Tìm giá trị nhỏ nhất của A

Lời giải:

a, A=\left({\frac{{\sqrt x }}{{2 - \sqrt x }}+\frac{{\sqrt x }}{{2 + \sqrt x }}}\right)-\frac{{6 + \sqrt x }}{{4 - x}}\(A=\left({\frac{{\sqrt x }}{{2 - \sqrt x }}+\frac{{\sqrt x }}{{2 + \sqrt x }}}\right)-\frac{{6 + \sqrt x }}{{4 - x}}\)với x ≥ 0, x ≠ 4

= \frac{{\sqrt x \left( {2 + \sqrt x } \right) + \sqrt x \left( {2 - \sqrt x } \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} - \frac{{6 + \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}\(= \frac{{\sqrt x \left( {2 + \sqrt x } \right) + \sqrt x \left( {2 - \sqrt x } \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} - \frac{{6 + \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}\)

= \frac{{2\sqrt x  + x + 2\sqrt x  - x}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} - \frac{{6 + \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}\(= \frac{{2\sqrt x + x + 2\sqrt x - x}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} - \frac{{6 + \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}\)

= \frac{{4\sqrt x  - 6 - \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} = \frac{{3\sqrt x  - 6}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}\(= \frac{{4\sqrt x - 6 - \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} = \frac{{3\sqrt x - 6}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}\)

= \frac{{3.\left( {\sqrt x  - 2} \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} = \frac{{ - 3}}{{2 + \sqrt x }}\(= \frac{{3.\left( {\sqrt x - 2} \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} = \frac{{ - 3}}{{2 + \sqrt x }}\)

b, Có x \ge 0 \Rightarrow \sqrt x  \ge 0 \Rightarrow \sqrt x  + 2 \ge 2 \Rightarrow \frac{3}{{\sqrt x  + 2}} \le \frac{3}{2} \Rightarrow \frac{{ - 3}}{{\sqrt x  + 2}} \ge \frac{{ - 3}}{2}\(x \ge 0 \Rightarrow \sqrt x \ge 0 \Rightarrow \sqrt x + 2 \ge 2 \Rightarrow \frac{3}{{\sqrt x + 2}} \le \frac{3}{2} \Rightarrow \frac{{ - 3}}{{\sqrt x + 2}} \ge \frac{{ - 3}}{2}\)

Dấu “=” xảy ra ⇔ x = 0

Vậy minA=\frac{{ - 3}}{2}\Leftrightarrow x=0\(A=\frac{{ - 3}}{2}\Leftrightarrow x=0\)

III. Bài tập tự luyện về tìm GTLN và GTNN của biểu thức chứa căn

Bài 1: Tìm giá trị của x nguyên để các biểu thức sau đạt giá trị lớn nhất:

a. A = \sqrt 3  - \sqrt {x - 1}\(A = \sqrt 3 - \sqrt {x - 1}\)

b. B = 6\sqrt x  - x - 1\(B = 6\sqrt x - x - 1\)

c. C = \frac{1}{{x - \sqrt x  - 1}}\(C = \frac{1}{{x - \sqrt x - 1}}\)

Bài 2: Cho biểu thức:

A = \frac{{4\left( {\sqrt x  + 1} \right)}}{{25 - x}};B = \left( {\frac{{15 - \sqrt x }}{{x - 25}} + \frac{2}{{\sqrt x  + 5}}} \right):\frac{{\sqrt x  + 1}}{{\sqrt x  - 5}};\left( {x \geqslant 0;x \ne 25} \right)\(A = \frac{{4\left( {\sqrt x + 1} \right)}}{{25 - x}};B = \left( {\frac{{15 - \sqrt x }}{{x - 25}} + \frac{2}{{\sqrt x + 5}}} \right):\frac{{\sqrt x + 1}}{{\sqrt x - 5}};\left( {x \geqslant 0;x \ne 25} \right)\)

a. Tính giá trị của biểu thức A khi x = 9

b. Rút gọn biểu thức B

c. Tìm tất cả các giá trị nguyên của x để biểu thức A.B đạt giá trị nguyên lớn nhất.

Bài 3: Cho biểu thức: A = \frac{{5\sqrt x  - 3}}{{x + \sqrt x  + 1}}\(A = \frac{{5\sqrt x - 3}}{{x + \sqrt x + 1}}\). Tìm giá trị của x để A đạt giá trị lớn nhất.

Bài 4: Với x > 0, hãy tìm giá trị lớn nhất của mỗi biểu thức sau:

a,  A = \frac{1}{{\sqrt x  + 1}}\(A = \frac{1}{{\sqrt x + 1}}\)b, B = \frac{{\sqrt x  + 3}}{{\sqrt x  + 2}}\(B = \frac{{\sqrt x + 3}}{{\sqrt x + 2}}\)c, C = \frac{{2\sqrt x }}{{x + 1}}\(C = \frac{{2\sqrt x }}{{x + 1}}\)
d, D = \frac{{\sqrt x }}{{x + 4}}\(D = \frac{{\sqrt x }}{{x + 4}}\)e, E = \frac{{2\sqrt x }}{{{{\left( {\sqrt x  + 1} \right)}^2}}}\(E = \frac{{2\sqrt x }}{{{{\left( {\sqrt x + 1} \right)}^2}}}\)

Bài 5: Cho biểu thức A = \left( {\frac{1}{{\sqrt x  - 1}} + \frac{{\sqrt x }}{{x - 1}}} \right):\frac{{2\sqrt x  + 1}}{{x + \sqrt x  - 2}}\(A = \left( {\frac{1}{{\sqrt x - 1}} + \frac{{\sqrt x }}{{x - 1}}} \right):\frac{{2\sqrt x + 1}}{{x + \sqrt x - 2}}\)

a, Rút gọn biểu thức A

b, Tìm giá trị lớn nhất của A

Bài 6: Cho biểu thức A = \left( {\frac{1}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x  + 1}}} \right):\frac{{\sqrt x }}{{x + \sqrt x }}\(A = \left( {\frac{1}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x + 1}}} \right):\frac{{\sqrt x }}{{x + \sqrt x }}\)

a, Tìm điều kiện xác định và rút gọn A

b, Tìm giá trị nhỏ nhất của A

Bài 7: Cho biểu thức M = \frac{{{a^2} + \sqrt a }}{{a - \sqrt a  + 1}} - \frac{{2a + \sqrt a }}{{\sqrt a }} + 1\(M = \frac{{{a^2} + \sqrt a }}{{a - \sqrt a + 1}} - \frac{{2a + \sqrt a }}{{\sqrt a }} + 1\)

a, Tìm điều kiện xác định và rút gọn M

b, Tìm giá trị nhỏ nhất của M

Bài 8: Tìm giá trị nhỏ nhất của mỗi biểu thức sau:

a, A = \frac{{ - 3}}{{\sqrt x  + 2}}\(A = \frac{{ - 3}}{{\sqrt x + 2}}\) với x ≥ 0b, B = \frac{{\sqrt x  - 1}}{{\sqrt x  + 1}}\(B = \frac{{\sqrt x - 1}}{{\sqrt x + 1}}\)với x ≥ 0
c, C = \frac{{x + 4}}{{\sqrt x }}\(C = \frac{{x + 4}}{{\sqrt x }}\)với x > 0d, D = \frac{{x + \sqrt x  + 1}}{{\sqrt x }}\(D = \frac{{x + \sqrt x + 1}}{{\sqrt x }}\)với x > 0

Bài 9. Cho x,y khác 0 thỏa mãn 2{x^2} + \dfrac{{{y^2}}}{4} + \dfrac{1}{{{x^2}}} = 4\(2{x^2} + \dfrac{{{y^2}}}{4} + \dfrac{1}{{{x^2}}} = 4\). Tìm GTLN, GTNN của A= xy

Bài 10. Cho x,y là hai số thực thỏa mãn 2{x^2} + \dfrac{{{y^2}}}{4} + \dfrac{1}{{{x^2}}} = 4\(2{x^2} + \dfrac{{{y^2}}}{4} + \dfrac{1}{{{x^2}}} = 4\) . Tìm GTLN, GTNN của A= xy

3. Cho x,y>0 thỏa mãn x+y=1. Tìm GTNN của A = \left( {4{x^2} + 3y} \right)\left( {4{y^2} + 3x} \right) + 25xy\(A = \left( {4{x^2} + 3y} \right)\left( {4{y^2} + 3x} \right) + 25xy\)

Bài 11: Tìm giá trị nhỏ nhất của mỗi biểu thức sau:

a, A = \frac{{ - 3}}{{\sqrt x  + 2}}\(A = \frac{{ - 3}}{{\sqrt x + 2}}\) với x ≥ 0b, B = \frac{{\sqrt x  - 1}}{{\sqrt x  + 1}}\(B = \frac{{\sqrt x - 1}}{{\sqrt x + 1}}\) với x ≥ 0
c, C = \frac{{x + 4}}{{\sqrt x }}\(C = \frac{{x + 4}}{{\sqrt x }}\) với x > 0d, D = \frac{{x + \sqrt x  + 1}}{{\sqrt x }}\(D = \frac{{x + \sqrt x + 1}}{{\sqrt x }}\) với x > 0

Tham khảo thêm

  • Bài tập phương trình bậc hai Có đáp án

  • Trục căn thức ở mẫu của biểu thức: Lý thuyết và Bài tập

  • Sử dụng sơ đồ Hoocne (Horner) để chia đa thức

  • Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa dấu căn

  • Bất đẳng thức Bunhiacopxki

  • Bài tập về đường thẳng và parabol Toán 9

  • Tìm m để (d) cắt (P) tại hai điểm phân biệt thỏa mãn điều kiện cho trước

  • Công thức nghiệm của phương trình bậc hai

  • Cách nhận biết các chất hóa học lớp 8 và 9

  • Chứng minh 3 điểm thẳng hàng trong đường tròn

Từ khóa » Cách Tìm Gtln Gtnn Của Biểu Thức Lớp 9