Tìm Họ Các Nguyên Hàm Của Hàm Số \(f(x) = \dfrac{1}{{6x

YOMEDIA NONE Tìm họ các nguyên hàm của hàm số \(f(x) = \dfrac{1}{{6x - 2}}\). ADMICRO
  • Câu hỏi:

    Tìm họ các nguyên hàm của hàm số \(f(x) = \dfrac{1}{{6x - 2}}\).

    • A. \(\int {\dfrac{{dx}}{{6x - 2}} = 6\ln |6x - 2| + C} \).
    • B. \(\int {\dfrac{{dx}}{{6x - 2}} = \dfrac{1}{6}\ln |6x - 2| + C} \).
    • C. \(\int {\dfrac{{dx}}{{6x - 2}} = \dfrac{1}{2}\ln |6x - 2| + C} \).
    • D. \(\int {\dfrac{{dx}}{{6x - 2}} = \ln |6x - 2| + C} \).

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có: \(\int {\dfrac{1}{{6x - 2}}\,dx} = \dfrac{1}{6}\int \dfrac{1}{{6x - 2}}\,d\left( {6x - 2} \right) \)\(\,= \dfrac{1}{6}\ln \left| {6x - 2} \right| + C \)

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 229871

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Võ Thị Sáu

    40 câu hỏi | 60 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Tìm \(I = \int {{x^2}\cos x\,dx} \).
  • Thể tích vật thể tròn xoay sinh ra bởi phép quay quanh Ox của hình phẳng giới hạn bởi trục Ox và \(y = \sqrt {x\s
  • Trong các hàm số sau hàm số nào không phải là một nguyên hàm của ?
  • Cho . Khi đó, có giá trị là:
  • Họ nguyên hàm của hàm số là:
  • Hình phẳng S giới hạn bởi các đường y = x, y = 0, y= 4 – x . Hình này quay quanh trục Oy tạo nên vật thể có thể tích là Vy. Lựa chọc phương án đúng.
  • Tính nguyên hàm ta được :
  • Cho miền (D) giới hạn bởi các đường sau: . Diện tích của miền (D) có giá trị là:
  • Hàm số là nguyên hàm của hàm số nào :
  • Tích phân có giá trị bằng:
  • Tích phân khi đó a – 10b bằng:
  • Cho hàm số y = f(x) liên tục trên đoạn [a ;b]. Diện tích hình phẳng giới hạn bởi đường cong y = f(x), trục hoành, các đường thẳng x = a, x = b là :
  • Cho . Tính .
  • Cho hàm số f(x) liên tục trên đoạn [a ; b]. Hãy chọn mệnh đề sai.
  • Xét tích phân . Thực hiện phép đổi biến t = cosx, ta có thể đưa I về dạng nào sau đây ?
  • Tìm hai số thực A, B sao cho \(f(x) = A\sin \pi x + B\), biết rằng f’(1) = 2 và \(\int\limits_0^2 {f(x)\,dx = 4} \).
  • Tính tích phân \(I = \int\limits_1^e {x\ln x\,dx} \).
  • Tìm nguyên hàm \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\)trên \((0; + \infty )\).
  • Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = x + \dfrac{1}{x}\), trục hoành, đường thẳng x= - 1 và đường thẳng x = - 2 là:
  • Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} } \,dx\). Đặt u = 8 + cosx thì kết quả nào sau đây đúng ?
  • Biết F(x) là nguyên hàm của \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Khi đó F(3) bằng :
  • Cho hình (H) giới hạn bởi các đường \(y = \sin x,y = 0,\,x = 0,\,x = \pi \). Thể tích vật thể tròn xoay sinh bởi (H) quay quanh trục Ox bằng :
  • Tính tích phân \(I = \int\limits_0^1 {\dfrac{2}{{\sqrt {4 - {x^2}} }}\,dx} \) bằng cách đặt x = 2sint. Mệnh đề nào dưới đây đúng ?
  • Tích phân \(I = \int\limits_1^e {\dfrac{{\sqrt {8\ln x + 1} }}{x}\,dx} \) bằng:
  • Tìm họ các nguyên hàm của hàm số \(f(x) = \dfrac{1}{{6x - 2}}\).
  • Điểm \(M\left( {x;y;z} \right)\) nếu và chỉ nếu:
  • Điểm \(M\) thỏa mãn \(\overrightarrow {OM} = \overrightarrow i - 3\overrightarrow j + \overrightarrow k \) có tọa độ:
  • Tung độ của điểm \(M\) thỏa mãn \(\overrightarrow {OM} = 2\overrightarrow j - \overrightarrow i + \overrightarrow k \) là:
  • Điểm \(N\) là hình chiếu của \(M\left( {x;y;z} \right)\) trên trục tọa độ \(Oz\) thì:
  • Gọi \(G\left( {4; - 1;3} \right)\) là tọa độ trọng tâm tam giác \(ABC\) với \(A\left( {0;2; - 1} \right),B\left( { - 1;3;2} \right)\). Tìm tọa độ điểm \(C\).
  • Cho tứ diện \(ABCD\) có \(A\left( {1;0;0} \right),B\left( {0;1;1} \right),C\left( { - 1;2;0} \right),\)\(\,D\left( {0;0;3} \right)\). Tọa độ trọng tâm tứ diện \(G\) là:
  • Cho đường thẳng \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \). Nếu \(d//\left( P \right)\) thì:
  • Cho đt \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \).
  • Cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{z}{3}\) và mặt phẳng \(\left( P \right):x + y - z - 3 = 0\). Tọa độ giao điểm của \(d\) và \(\left( P \right)\) là:
  • Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\). Khi đó \(d \equiv d'\) nếu:
  • Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \). Nếu \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)thì:
  • Điều kiện cần và đủ để hai đường thẳng cắt nhau là:
  • Cho \(d,d\) là các đt có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u} ,M \in d,M \in d\).
  • Khi xét hệ phương trình giao hai đường thẳng, nếu hệ có nghiệm duy nhất thì:
  • Khi xét hệ phương trình giao điểm hai đường thẳng, nếu hệ vô nghiệm và hai véc tơ \(\overrightarrow u ,\overrightarrow {u'} \) cùng phương thì hai đường thẳng:
ADSENSE TRACNGHIEM Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 8 Lớp 12 Life in the future

Tiếng Anh 12 mới Unit 4

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Ôn tập Hóa học 12 Chương 4

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Sinh Học 12 Chương 1 Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Sinh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

Quá trình văn học và phong cách văn học

Sóng- Xuân Quỳnh

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON tracnghiem.net QC Bỏ qua >>

Từ khóa » Nguyên Hàm 6x^2