Tìm Khoảng Cách Giữa Hai đường Thẳng Song Song - Toán Lớp 10

Tìm khoảng cách giữa hai đường thẳng song song
  • HOT Sale 40% sách Toán - Văn - Anh 10 Vietjack 12-12 trên Shopee mall
Trang trước Trang sau

Bài viết Tìm khoảng cách giữa hai đường thẳng song song với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm khoảng cách giữa hai đường thẳng song song.

  • Cách giải bài tập Tìm khoảng cách giữa hai đường thẳng song song
  • Ví dụ minh họa bài tập Tìm khoảng cách giữa hai đường thẳng song song
  • Bài tập vận dụng Tìm khoảng cách giữa hai đường thẳng song song
  • Bài tập tự luyện Tìm khoảng cách giữa hai đường thẳng song song

Tìm khoảng cách giữa hai đường thẳng song song

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Quảng cáo

A. Phương pháp giải

Cho hai đường thẳng (d) và (d’) song song với nhau. Khoảng cách hai đường thẳng này bằng khoảng cách từ một điểm bất kì của đường thẳng này đến đường thẳng kia.

d( d; d’) = d( A; d’) trong đó A là một điểm thuộc đường thẳng d.

⇒ Để tính khoảng cách hai đường thẳng song song ta cần:

+ Đưa phương trình hai đường thẳng về dạng tổng quát.

+ Lấy một điểm A bất kì thuộc đường thẳng d.

+ Tính khoảng cách từ điểm A đến đường thẳng d’ .

+ Kết luận: d( d; d’) = d( A; d’) .

B. Ví dụ minh họa

Ví dụ 1: Khoảng cách giữa hai đường thẳng ∆: 6x - 8y - 101 = 0 và d: 3x - 4y = 0 là:

A. 10, 1 B. 1,01 C. 12 D. √101 .

Hướng dẫn giải

+ Ta có: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Hai đường thẳng đã cho song song với nhau: d // ∆.

+ Lấy điểm O( 0;0) thuộc đường thẳng d.

+ Do hai đường thẳng d và ∆ song song với nhau nên

d(∆; d) = d ( O; ∆) = Tìm khoảng cách giữa hai đường thẳng song song = 10,1

Chọn A.

Quảng cáo

Ví dụ 2. Tính khoảng cách giữa hai đường thẳng d: 7x + y - 3 = 0 và ∆: Tìm khoảng cách giữa hai đường thẳng song song .

A. Tìm khoảng cách giữa hai đường thẳng song song B. 15 C. 9 D. Tìm khoảng cách giữa hai đường thẳng song song

Lời giải

+ Ta đưa đường thẳng ∆ về dạng tổng quát:

∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình ∆: 7( x + 2) + 1( y - 2) = 0 hay 7x + y + 12 = 0

Ta có: Tìm khoảng cách giữa hai đường thẳng song song nên d // ∆

⇒ d(d;Δ) = d(A;d) = Tìm khoảng cách giữa hai đường thẳng song song

Chọn A.

Ví dụ 3. Tập hợp các điểm cách đường thẳng ∆: 3x - 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?

A. 3x - 4y + 8 = 0 hoặc 3x - 4y + 12 = 0. B. 3x - 4y - 8 = 0 hoặc 3x - 4y + 12 = 0.

C. 3x - 4y - 8 = 0 hoặc 3x - 4y - 12 = 0. D. 3x - 4y + 8 = 0 hoặc 3x - 4y - 12 = 0.

Lời giải

Gọi điểm M (x ; y) là điểm cách đường thẳng ∆ một khoảng bằng 2. Suy ra :

d(M(x; y); Δ) = 2 ⇔ Tìm khoảng cách giữa hai đường thẳng song song = 2

|3x - 4y + 2| = 10 ⇒ Tìm khoảng cách giữa hai đường thẳng song song

Vậy tập hợp các điểm cách ∆ một khoảng bằng 2 là hai đường thẳng :

3x - 4y + 12 = 0 và 3x - 4y - 8 = 0

Chọn B.

Ví dụ 4. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: 5x + 3y - 3 = 0 và d2: 5x + 3y + 7 = 0 song song nhau. Đường thẳng d vừa song song và cách đều với d1; d2 là:

A. 5x + 3y - 2 = 0 B. 5x + 3y + 4 = 0 C. 5x + 3y + 2 = 0 D. 5x + 3y - 4 = 0

Lời giải

Lấy điểm M ( x; y) thuộc đường thẳng d. Suy ra:

d(M(x; y); d1)=d(M(x; y); d2) ⇔ Tìm khoảng cách giữa hai đường thẳng song song

Tìm khoảng cách giữa hai đường thẳng song song

Đường thẳng d: 5x + 3y + 2 song song với hai đường thẳng d1 và d2.

Vậy đường thẳng d thỏa mãn là: 5x + 3y + 2 = 0

Chọn C.

Quảng cáo

Ví dụ 5: Cho đường thẳng d: Tìm khoảng cách giữa hai đường thẳng song song và đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song . Tính khoảng cách hai đường thẳng này.

A. 1 B. 0. C. 2 D. 3

Lời giải

+ Đường thẳng d: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình d: 3(x - 2) – 2(y + 1) = 0 hay 3x - 2y - 8 = 0

+ Đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình ∆: 3(x - 0) – 2(y + 4) = 0 hay 3x - 2y - 8 = 0

⇒ hai đường thẳng này trùng nhau nên khoảng cách hai đường thẳng này là 0.

Chọn B.

Ví dụ 6: Cho hai đường thẳng d: x + y - 2 = 0 và đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song . Viết phương trình đường thẳng d’// d sao cho khoảng cách hai đường thẳng d’ và ∆ là √2.

A. x + y - 1 = 0 B. x + y + 1= 0 C. x + y - 3 = 0 D. Cả B và C đúng.

Lời giải

+ Do đường thẳng d’// d nên đường thẳng d có dạng (d’) : x + y + c = 0( c ≠ -2)

+ Đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình ∆: 1(x + 2) + 1(y - 3) = 0 hay x + y - 1 = 0.

+ Lấy điểm M ( 1; 0) thuộc ∆.

Để khoảng cách hai đường thẳng d’ và ∆ bằng 2 khi và chỉ khi:

d( d’; ∆) = d( M; d’) = 2

Tìm khoảng cách giữa hai đường thẳng song song = √2 ⇔ |1 + c| = 2

Tìm khoảng cách giữa hai đường thẳng song song

Vậy có hai đường thẳng thỏa mãn là : x + y + 1 = 0 và x + y - 3 = 0

Chọn D.

Quảng cáo

Ví dụ 7: Cho tam giác ABC có B( 1; -2) và C( 0; 1). Điểm A thuộc đường thẳng d: 3x+ y= 0 .Tính diện tích tam giác ABC.

A. 1 B. 3 C. 0,5 D. 2

Lời giải

+ Phương trình đường thẳng BC:

Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình BC: 3(x - 1) + 1(y + 2) = 0 hay 3x + y - 1 = 0 .

+ ta có; BC = Tìm khoảng cách giữa hai đường thẳng song song = √10

+ Xét vị trí tương đối giữa đường thẳng d và BC:

Ta có: Tìm khoảng cách giữa hai đường thẳng song song ⇒ d // BC.

Mà điểm A thuộc d nên d( A; BC) = d( d; BC) . (1)

+ Ta tính khoảng cách hai đường thẳng d và BC.

Lấy điểm O(0; 0) thuộc d.

⇒ d(d; BC) = d(O;BC) = Tìm khoảng cách giữa hai đường thẳng song song = Tìm khoảng cách giữa hai đường thẳng song song ( 2)

Từ ( 1) và ( 2) suy ra d( A; BC) = Tìm khoảng cách giữa hai đường thẳng song song .

+ Diện tích tam giác ABC là S = Tìm khoảng cách giữa hai đường thẳng song song d( A,BC).BC = Tìm khoảng cách giữa hai đường thẳng song song .Tìm khoảng cách giữa hai đường thẳng song song .√10 = 0, 5

Chọn C.

C. Bài tập vận dụng

Câu 1: Cho hai đường thẳng d: x + y - 4 = 0 và đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song . Tính khoảng cách giữa hai đường thẳng này?

A. 1 B. 2 C. √2 D. Đáp án khác

Lời giải:

Đáp án: C

+Đường thẳng ∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình đường thẳng ∆: 1( x - 1) + 1( y - 1) = 0 hay x + y - 2 = 0.

+ Ta có: Tìm khoảng cách giữa hai đường thẳng song song nên hai đường thẳng d//∆.

+ Lấy điểm A( 1; 1) thuộc ∆. Do d // ∆ nên :

d(d; ∆) = d(A; d) = Tìm khoảng cách giữa hai đường thẳng song song = √2

Câu 2: Cho đường thẳng d: x - 2y + 2 = 0 . Phương trình các đường thẳng song song với d và cách d một đoạn bằng √5 là

A. x - 2y - 3 = 0; x - 2y + 7 = 0 B. x - 2y + 3 = 0 và x - 2y + 7 = 0

C. x - 2y - 3 = 0; x - 2y - 7 = 0 D. x - 2y + 3 = 0; x - 2y - 7 = 0 .

Lời giải:

Đáp án: A

+ Gọi ∆ là đường thẳng song song với d: x - 2y + 2 = 0

⇒ Đường thẳng ∆ có dạng: x - 2y + c = 0 ( c ≠ 2 ) .

+ Lấy một điểm A( -2 ; 0) thuộc d.

⇒ d( d ; ∆) = d( A ; ∆) = √5

Tìm khoảng cách giữa hai đường thẳng song song = √5 ⇔ |c - 2| = 5 nên Tìm khoảng cách giữa hai đường thẳng song song

+ Vậy có hai đường thẳng thỏa mãn là x - 2y + 7 = 0 hoặc x - 2y - 3 = 0.

Câu 3: Cho đường thẳng d: 3x + 4y + 1 = 0. Có 2 đường thẳng d1 và d2 cùng song song với d và cách d một khoảng bằng 1. Hai đường thẳng đó có phương trình là:

A. 3x + 4y - 7 = 0; 3x - 4y + 3 = 0. B. 3x - 4y + 7 = 0; 3x - 4y - 3 = 0

C. 3x + 4y + 4 = 0; 3x + 4y + 3 = 0. D. 3x + 4y - 4 = 0; 3x + 4y + 6 = 0 .

Lời giải:

Đáp án: D

+ Do đường thẳng song song với d nên ∆ có dạng là : ∆ : 3x + 4y + c = 0 ( c ≠ 1) .

Lấy điểm M(-3 ; 2) thuộc d

Do d(d ; ∆) = d( M ; ∆) =1 ⇔ Tìm khoảng cách giữa hai đường thẳng song song = 1

⇔ |c - 1| = 5 ⇔ Tìm khoảng cách giữa hai đường thẳng song song

Vậy có hai đường thẳng thỏa mãn là : 3x + 4y + 6 = 0 hoặc 3x + 4y - 4 = 0

Câu 4: Khoảng cách giữa 2 đường thẳng (a): 7x + y - 3 = 0 và (b): 7x + y + 12 = 0 là

A. Tìm khoảng cách giữa hai đường thẳng song song B. 9. C. Tìm khoảng cách giữa hai đường thẳng song song D. 15.

Lời giải:

Đáp án: C

Ta có : Tìm khoảng cách giữa hai đường thẳng song song nên a // b

Lây điểm M (0 ; 3) thuộc( a) .

Do a // b nên d(M ; b) = d( a ; b) = Tìm khoảng cách giữa hai đường thẳng song song

Câu 5: Cho đường thẳng d: 3x - 4y + 2 = 0. Có đường thẳng a và b cùng song song với d và cách d một khoảng bằng 1. Hai đường thẳng đó có phương trình là:

A. 3x + 4y - 1 = 0 ; 3x + 4y + 5 = 0 B. 3x - 4y + 7 = 0 ; 3x - 4y - 3 = 0

C. 3x + 4y - 3 = 0 ; 3x + 4y + 7 = 0 D. 3x - 4y + 6 = 0; 3x - 4y - 4 = 0

Lời giải:

Đáp án: B

Giả sử đường thẳng ∆ song song với d : 3x - 4y + 2 = 0

Khi đó ; ∆ có phương trình là ∆ : 3x - 4y + C = 0.

Lấy điểm M( -2 ; -1) thuộc d.

Do d(d; ∆) = 1 ⇔ Tìm khoảng cách giữa hai đường thẳng song song = 1 ⇔ |C - 2| = 5 ⇔ Tìm khoảng cách giữa hai đường thẳng song song

Do đó hai đường thẳng thỏa mãn là : 3x - 4y + 7 = 0 và 3x - 4y - 3 = 0.

Câu 6: Cho đường thẳng d: 2x - 3y + 6 = 0 và đường thẳng ∆: 4x - 6y + 20 = 0. Viết phương trình đường thẳng d’ // d sao cho khoảng cách hai đường thẳng d’ và ∆ là √13

A. 2x - 3y + 23 = 0 B. 2x - 3y - 3 = 0.

C. 2x - 3y – 8 = 0 và 2x - 3y = 0 D. Cả A và B đúng

Lời giải:

Đáp án: D

+ Ta có đường thẳng d’// d nên đường thẳng d’ có dạng : 2x - 3y + c = 0 ( c ≠ 6)

+ Xét vị trí của hai đường thẳng d và ∆: Tìm khoảng cách giữa hai đường thẳng song song

⇒ Hai đường thẳng d và ∆ song song với nhau .

Mà d // d’ nên d’ // ∆.

+ Lấy điểm A( -5; 0) thuộc ∆.

+ Do d’ // ∆ nên d( d’; ∆) = d( A; d’) = √13

Tìm khoảng cách giữa hai đường thẳng song song = √13 ⇔ Tìm khoảng cách giữa hai đường thẳng song song

Tìm khoảng cách giữa hai đường thẳng song song

Vậy có hai đường thẳng thỏa mãn là 2x - 3y + 23 = 0 và 2x - 3y - 3 = 0.

Câu 7: Cho tam giác ABC có B( - 2; 1) và C( 2; 0). Điểm A thuộc đường thẳng d: x+ 4y- 10= 0 .Tính diện tích tam giác ABC.

A. 1 B. 3 C. 0,5 D. 2

Lời giải:

Đáp án: A

+ Phương trình đường thẳng BC:

Tìm khoảng cách giữa hai đường thẳng song song

⇒ Phương trình BC: 1( x + 2) + 4( y - 1) = 0 hay x + 4y - 2 = 0 .

+ ta có; BC = Tìm khoảng cách giữa hai đường thẳng song song = √17

+ Xét vị trí tương đối giữa đường thẳng d và BC:

Ta có: Tìm khoảng cách giữa hai đường thẳng song song ⇒ d // BC.

Mà điểm A thuộc d nên d( A; BC) = d( d; BC) . (1)

+ Ta tính khoảng cách hai đường thẳng d và BC.

Lấy điểm H( 10; 0) thuộc d.

⇒ d(d; BC) = d(H;BC) = Tìm khoảng cách giữa hai đường thẳng song song = Tìm khoảng cách giữa hai đường thẳng song song ( 2)

Từ ( 1) và ( 2) suy ra d( A; BC) = Tìm khoảng cách giữa hai đường thẳng song song

+ Diện tích tam giác ABC là S = Tìm khoảng cách giữa hai đường thẳng song song d( A,BC).BC = Tìm khoảng cách giữa hai đường thẳng song song . Tìm khoảng cách giữa hai đường thẳng song song .√17= 1

D. Bài tập tự luyện

Bài 1. Tính khoảng cách giữa hai đường thẳng ∆: 3x – 5y – 10 = 0 và d: 6x – 10y = 0.

Bài 2. Tìm đường thẳng song song và cách đường thẳng d: 2x + 3y – 6 = 0 một khoảng bẳng 3.

Bài 3. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: 3x + 6y – 5 = 0 và d2: 3x + 6y + 7 = 0 song song nhau. Tìm đường thẳng d vừa song song và cách đều với d1; d2.

Bài 4. Cho đường thẳng d: {x = 1 + 2t; y = 3 – 2t}. Tìm phương trình đường thẳng song song với d và cách d một khoảng bằng 5.

Bài 5. Cho đường thẳng d: 2x + 3y + 5 = 0. Có 2 đường thẳng d1 và d2 cùng song song với d và cách d một khoảng bằng 3. Tìm phương trình hai đường thẳng đó.

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

  • Các bài toán cực trị liên quan đến đường thẳng
  • Tính khoảng cách từ một điểm đến một đường thẳng
  • Tìm điểm thuộc đường thẳng có độ dài thỏa mãn điều kiện
  • Vị trí tương đối của 2 điểm với đường thẳng: cùng phía, khác phía
  • Cách xác định góc giữa hai đường thẳng
  • Viết phương trình đường thẳng d đi qua M và tạo với d’ một góc
  • Viết phương trình đường phân giác của góc tạo bởi hai đường thẳng
👉 Giải bài nhanh với AI Hay:

Để học tốt lớp 10 các môn học sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
  • HOT 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k)

Tủ sách VIETJACK shopee lớp 10-11 (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • Ra mắt Sách 50 đề THPT quốc gia form 2026 toán, văn, anh.... (từ 80k/1 cuốn)

TÀI LIỆU CLC DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

+ Bộ giáo án, bài giảng powerpoint, đề thi file word có đáp án 2025 tại https://tailieugiaovien.com.vn/

+ Hỗ trợ zalo: VietJack Official

+ Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đề thi giữa kì, cuối kì 10

( 254 tài liệu )

Bài giảng Powerpoint Văn, Sử, Địa 10....

( 42 tài liệu )

Giáo án word 10

( 95 tài liệu )

Chuyên đề dạy thêm Toán, Lí, Hóa ...10

( 71 tài liệu )

Đề thi HSG 10

( 8 tài liệu )

Trắc nghiệm đúng sai 10

( 41 tài liệu )

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau phuong-phap-toa-do-trong-mat-phang.jsp Giải bài tập lớp 10 sách mới các môn học
  • Giải Tiếng Anh 10 Global Success
  • Giải Tiếng Anh 10 Friends Global
  • Giải sgk Tiếng Anh 10 iLearn Smart World
  • Giải sgk Tiếng Anh 10 Explore New Worlds
  • Lớp 10 - Kết nối tri thức
  • Soạn văn 10 (hay nhất) - KNTT
  • Soạn văn 10 (ngắn nhất) - KNTT
  • Soạn văn 10 (siêu ngắn) - KNTT
  • Giải sgk Toán 10 - KNTT
  • Giải sgk Vật lí 10 - KNTT
  • Giải sgk Hóa học 10 - KNTT
  • Giải sgk Sinh học 10 - KNTT
  • Giải sgk Địa lí 10 - KNTT
  • Giải sgk Lịch sử 10 - KNTT
  • Giải sgk Kinh tế và Pháp luật 10 - KNTT
  • Giải sgk Tin học 10 - KNTT
  • Giải sgk Công nghệ 10 - KNTT
  • Giải sgk Hoạt động trải nghiệm 10 - KNTT
  • Giải sgk Giáo dục quốc phòng 10 - KNTT
  • Lớp 10 - Chân trời sáng tạo
  • Soạn văn 10 (hay nhất) - CTST
  • Soạn văn 10 (ngắn nhất) - CTST
  • Soạn văn 10 (siêu ngắn) - CTST
  • Giải Toán 10 - CTST
  • Giải sgk Vật lí 10 - CTST
  • Giải sgk Hóa học 10 - CTST
  • Giải sgk Sinh học 10 - CTST
  • Giải sgk Địa lí 10 - CTST
  • Giải sgk Lịch sử 10 - CTST
  • Giải sgk Kinh tế và Pháp luật 10 - CTST
  • Giải sgk Hoạt động trải nghiệm 10 - CTST
  • Lớp 10 - Cánh diều
  • Soạn văn 10 (hay nhất) - Cánh diều
  • Soạn văn 10 (ngắn nhất) - Cánh diều
  • Soạn văn 10 (siêu ngắn) - Cánh diều
  • Giải sgk Toán 10 - Cánh diều
  • Giải sgk Vật lí 10 - Cánh diều
  • Giải sgk Hóa học 10 - Cánh diều
  • Giải sgk Sinh học 10 - Cánh diều
  • Giải sgk Địa lí 10 - Cánh diều
  • Giải sgk Lịch sử 10 - Cánh diều
  • Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
  • Giải sgk Tin học 10 - Cánh diều
  • Giải sgk Công nghệ 10 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 10 - Cánh diều

Từ khóa » Ct Khoảng Cách Giữa Hai đường Thẳng